參考文獻 |
1. Wright, N. C. , et al., The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. Journal of Bone Mineral Research, 2014. 29(11): p. 2520-2526.
2. Department of Health and Human Services, Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, Maryland: Department of Health and Human Services, Office of the Surgeon General, 2004.
3. Adami, S. and Zamberlan, N. , Adverse Effects of Bisphosphonates A Comparative Review. Drug Safety, 1996. 14(3): p. 158-170.
4. Adami, S, et al., The Acute-Phase Response after Bisphosphonate Administration. Calcified Tissue International, 1987. 41(6): p. 326-331.
5. Heckbert, S. R. , et al., Use of Alendronate and Risk of Incident Atrial Fibrillation in Women. Archives of Internal Medicine, 2008. 168(8): p. 826-831.
6. Reginster, J. Y. , et al., Osteoporosis and sarcopenia: two diseases or one? Current Opinion In Clinical Nutrition and Metabolic Care, 2016. 19(1): p. 31-36.
7. Chung, H. , et al., Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia. Cachexia Sarcopenia and Muscle, 2021. 12(6): p. 2220-2230.
8. Egan, B. and Zierath, J. R. , Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 2013. 17(2): p. 162-184..
9. Karakiriou, S. K. , et al., Effects of vibration and exercise training on bone mineral density and muscle strength in post-menopausal women. European Journal of Sport Science, 2012. 12(1): p. 81-88.
10. Avin, K. G. , et al., Biomechanical Aspects of the Muscle-Bone Interaction. Current Osteoporosis Reports, 2014. 13(1): p. 1-8.
11. Brotto, M. and Bonewald, L. , Bone and muscle: Interactions beyond mechanical. Bone, 2015. 80: p. 109-114.
12. Vandenburgh, H. H. , Cell Shape and Growth Regulation in Skeletal Muscle: Exogenous Versus Endogenous Factors. Journal of Cellular Physiology, 1983. 116(3): p. 363-371.
13. Chiquet, M. , Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology, 1999. 18(5): p. 417-426.
14. Ostrovidov, S. , et al., Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Engineering Part B, 2014. 20(5): p. 403-436.
15. Iizuka, K. , et al., Skeletal muscle is an endocrine organ. Pharmacological Sciences, 2014. 125(2): p. 125-131.
16. Fiedler, I. , et al., Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, 2000. 66(2): p. 177-188.
17. Olson, E. N. , Potthoff, M. J. , Rhonda BD, Skeletal muscle remodeling. Current Opinion in Rheumatology, 2007. 19(6): p. 542-549.
18. Jorgenson, K. W. , et al., Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells, 2020. 9(7), 1658.
19. Huxley, H. E. , The Mechanism of Muscular Contraction. Science, 1969. 164(3886): p. 1356-1366.
20. Fusto, A. , et al., Cored in the act: the use of models to understand core myopathies. Disease Models and Mechanisms, 2019. 12(12), 041368.
21. Sims, N. A. and Gooi, J. H. , Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in Cell & Developmental Biology, 2008. 19(5): p. 444-451.
22. Clarke, B. , Normal bone anatomy and physiology. Nephrology, 2008. 3(3): p. 131-139.
23. Manolagas, S. C. , Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis. Endocrine reviews, 2000. 21(2): p. 115-137.
24. Hadjidakis, D. J. and Androulakis, I. I. , Bone remodeling. Annals of the New York Academy of Sciences, 2006. 1092(1): p. 385-396.
25. Ardura, J. A. , et al., Linking bone cells, aging, and oxidative stress: Osteoblasts, osteoclasts, osteocytes, and bone marrow cells. Aging. 2020. p. 61-71.
26. Pedersen, B. K. , Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. Journal of Applied Physiology, 2009. 107(4): p. 1006-1014.
27. Chen, W. , et al., Myokines mediate the cross talk between skeletal muscle and other organs. Cellular Physiology, 2021. 236(4): p. 2393-2412.
28. Ma, Y. , et al., Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2015. 1852(5): p. 1001-1011.
29. Ying, Z. , Vaynman, S. , Gomez-Pinilla, F. , Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 2003. 122(3): p. 647-657.
30. Brondani, L. A. , et al., Irisin-encoding gene (FNDC5) variant is associated with changes in blood pressure and lipid profile in type 2 diabetic women but not in men. Metabolism Clinical and Experimental, 2015. 64(9): p. 952-957.
31. Colaianni, G. , et al., Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Scientific Reports, 2017. 7(1): p. 2811-2826.
32. Bettis, T. , et al., Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporosis International, 2018. 29(8): p. 1713-1720.
33. Elkasrawy, M. N. and Hamrick, M. W. , Myostatin (GDF-8) as a Key Factor Linking Muscle Mass and Bone Structure. Musculoskelet Neuronal Interaction, 2010. 10(1): p. 56-63.
34. Kaji, H. , Effects of myokines on bone. Bonekey Reports, 2016. 5, 826.
35. Moustogiannis, A. , et al., Characterization of Optimal Strain, Frequency and Duration of Mechanical Loading on Skeletal Myotubes′ Biological Responses. In Vivo, 2020. 34(4): p. 1779-1788.
36. Dankbar, B. , et al., Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nature Medicine, 2015. 21(9): p. 1085-1090.
37. Hamrick, M. W. , et al., Role of muscle-derived growth factors in bone formation. Musculoskelet Neuronal Interactaction, 2010. 10(1): p. 64-70.
38. Guntur, A. R. and Rosen, C. J. , IGF-1 regulation of key signaling pathways in bone. Bonekey Reports, 2013. 2, 437.
39. Locatelli, V. and Bianchi, V. E. , Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. International Journal of Endocrinology, 2014. 2014, 235060.
40. Hamrick, M. W. , et al., Role of muscle-derived growth factors in bone formation. Musculoskelet Neuronal Interaction, 2010. 10(1): p. 64-70.
41. Banu, J. , et al., Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcified Tissue Internation, 2003. 73(2): p. 196-201.
42. Wang, Y. , et al., Role of IGF-I signaling in regulating osteoclastogenesis. Bone and Mineral Research, 2006. 21(9): p. 1350-1358.
43. Hill, P. A. , et al., Osteoblasts Mediate Insulin-Like Growth Factor-I and -11 Stimulation of Osteoclast Formation and Function. Endocrinology, 1995. 36(1): p. 124-131.
44. Hamrick, M. W. , The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Reports, 2012. 1(4): p. 60-65.
45. Clarke, M. S. and Feeback, D. L. , Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB, 1996. 10(4): p. 502-509.
46. Coffin, J. D. , et al., Fibroblast Growth Factor 2 and Its Receptors in Bone Biology and Disease. Endocrine Society, 2018. 2(7): p. 657-671.
47. Montero, A. , et al., Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. Clinical Investigation, 2000. 105(8): p. 1085-1093.
48. Kharitonenkov, V , et al., FGF-21 as a novel metabolic regulator. Clinical Investigation, 2005. 115(6): p. 1627-1635.
49. Cuevas-Ramos, D. , et al., Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLOS One, 2012. 7(5): p. 38022-38030.
50. Coskun, T. , et al., Fibroblast growth factor 21 corrects obesity in mice. Endocrinology, 2008. 149(12): p. 6018-6027.
51. Hojman, P. , et al., Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes, 2009. 58(12): p. 2797-2801.
52. Wei, W. , et al., Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proceedings of The National Academy of Sciences, 2012. 109(8): p. 3143-3148.
53. Crossley, P. H. and Martin, G. R. , The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development, 1995. 121(2): p. 439-451.
54. Omoteyama, K. and Takagi, M. , FGF8 regulates myogenesis and induces Runx2 expression and osteoblast differentiation in cultured cells. Cellular Biochemistry, 2009. 106(4): p. 546-552.
55. Bostrom, P. , et al., A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012. 481(7382): p. 463-468.
56. Hofmann, T. , et al., Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides, 2014. 54: p. 89-100.
57. Wu, J. , et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012. 150(2): p. 366-376.
58. Gomarasca, M. , et al., Myokines: The endocrine coupling of skeletal muscle and bone. Advances in Clinical Chemistry, 2020. 94: p. 155-218.
59. Toma, C. D. , et al., Signal Transduction of Mechanical Stimuli Is Dependent on Microfilament Integrity: Identification of Osteopontin as a Mechanically Induced Gene in Osteoblasts. Bone and Mineral Research, 1997. 12(10): p. 1626-1636.
60. Colaianni, G. and Grano, M. , Role of Irisin on the bone-muscle functional unit. Bonekey Reports, 2015. 4: p. 765-769.
61. Colaianni, G. , et al., The myokine irisin increases cortical bone mass. Proceedings of The National Academy of Sciences, 2015. 112(39): p. 12157-12162.
62. Colaianni, G. , et al., Irisin enhances osteoblast differentiation in vitro. International Journal of Endocrinology, 2014. 2014, 902186.
63. Kawao, N. , et al., Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. Bone and Mineral Metabolism, 2021. 39(4): p. 547-557.
64. Ma, Y. , et al., Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB, 2018. 32(11): p. 5813-5823.
65. Snider, W. D. , How do you feel? Neurotrophins and mechanotransduction. Nature Neuroscience, 1998. 1(1): p. 5-6.
66. McGee, S. L. and Hargreaves, M. , Exercise and Myocyte Enhancer Factor 2 Regulation in Human Skeletal Muscle. Diabetes, 2004. 53(5): p. 1208-1214.
67. Matthews, V. B. , et al., Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2009. 52(7): p. 1409-1418.
68. Choi, B. , et al., Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget, 2016. 7(34): p. 55506-55517.
69. Sun, C. Y. , et al., Brain-derived neurotrophic factor is a potential osteoclast stimulating factor in multiple myeloma. Cancer, 2012. 130(4): p. 827-836.
70. Kilian, O. , et al., BDNF and its TrkB receptor in human fracture healing. Annals of Anatomy, 2014. 196(5): p. 286-295.
71. Kristiansen, O. P. and Mandrup-Poulsen, T. , Interleukin-6 and Diabetes : The Good, the Bad, or the Indifferent? Diabetes, 2005. 54(2): p. 114-124.
72. Pedersen, B. K. and Febbraio, M. A. , Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological Reviews, 2008. 88(4): p. 1379-1406.
73. Carey, A. L. , et al., Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 2006. 55(10): p. 2688-2697.
74. Benedetti, F. D. , et al., Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis and Rheumatism, 2006. 54(11): p. 3551-3563.
75. Yang, X. , et al., Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone, 2007. 41(6): p. 928-936.
76. Scheler, M. , et al., Cytokine response of primary human myotubes in an in vitro exercise model. American Journal of Physiology-Cell Physiology, 2013. 305(8): p. 877-886.
77. Juffer, P. , et al., Mechanically loaded myotubes affect osteoclast formation. Calcified Tissue Internation, 2014. 94(3): p. 319-326.
78. Diao, Y. , et al., SOCS1, SOCS3, and PIAS1 promote myogenic differentiation by inhibiting the leukemia inhibitory factor-induced JAK1/STAT1/STAT3 pathway. Molecular and Cellular Biology, 2009. 29(18): p. 5084-5093.
79. Sims, N. A. and Johnson, R. W. , Leukemia inhibitory factor: a paracrine mediator of bone metabolism. Growth Factors, 2012. 30(2): p. 76-87.
80. Cornish, J. , et al., The Effect of Leukemia Inhibitory Factor on Bone in Vivo. Endocrinology, 1993. 132(3): p. 1359-1366.
81. Lim, S. , et al., Effects of aerobic exercise training on C1q tumor necrosis factor alpha-related protein isoform 5 (myonectin): association with insulin resistance and mitochondrial DNA density in women. Clinical Endocrinology and Metabolism, 2012. 97(1): p. 88-93.
82. Seldin, M. M. , et al., Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. Biological Chemistry, 2012. 287(15): p. 11968-11980.
83. Kawaguchi, M. , et al., Myonectin inhibits the differentiation of osteoblasts and osteoclasts in mouse cells. Heliyon, 2020. 6(5), 03967.
84. Tangirala, R. K. , et al., Regulation of Expression of the Human Monocyte Chemotactic Protein-1 Receptor (hCCR2) by Cytokines. Biological Chemistry, 1997. 272(12): p. 8050-8056.
85. Friedrich, E. B. , et al., Role of integrin-linked kinase in leukocyte recruitment. Biological Chemistry, 2002. 277(19): p. 16371-16375.
86. Kim, M. S. , et al., MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. Biological Chemistry, 2005. 280(16): p. 16163-16169.
87. Henningsen, J. , et al., Dynamics of the skeletal muscle secretome during myoblast differentiation. Molecular and Cellular Proteomics, 2010. 9(11): p. 2482-2496.
88. Miura, T. , et al., Decorin binds myostatin and modulates its activity to muscle cells. Biochemical and Biophysical Research Communications, 2006. 340(2): p. 675-680.
89. Han, X. G. , et al., Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues. Genetics and Molecular Research, 2015. 14(3): p. 11063-11072.
90. McCawley, L. J. and Matrisian, L. M. , Matrix metalloproteinases: they’re not just for matrix anymore! Current Opinion in Cell Biology, 2001. 13(5): p. 534-540.
91. Mosig, R. A. , et al., Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Human Molecular Genetics, 2007. 16(9): p. 1113-1123
92. Egeblad, M. and Werb, Z. , New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2002. 2(3): p. 161-174.
93. Deus, A. P. , et al., MMP(-2) expression in skeletal muscle after strength training. Sports Medicine, 2012. 33(2): p. 137-141.
94. Milkiewicz, M. , et al., Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. Journal of Cellular Biochemistry, 2007. 100(3): p. 750-761.
95. Barnes, B. R. , et al., Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. Physiological of Cell, 2009. 297(6): p. 1501-1508.
96. Martignetti, J. A. , et al., Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genetics, 2001. 28(3): p. 261-265.
97. Inoue, K. , et al., A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. Biological Chemistry, 2006. 281(44): p. 33814-33824.
98. Qin, Y. , et al., Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. Journal of Biological Chemistry, 2017. 292(26): p. 11021-11033.
99. Mochizuki, H. , et al., Insulin-Like Growth Factor-I Supports Formation and Activation of Osteoclasts. Endocrinology, 1992. 131(3): p. 1075-1080.
100. Kim, H. , et al., Irisin Mediates Effects on Bone and Fat via alphaV Integrin Receptors. Cell, 2018. 175(7): p. 1756-1768.
101. Ida-Yonemochi, H. , et al., Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury. PLOS One, 2017. 12(1), 0169201.
102. Li, Y. , et al., IL-6 receptor expression and IL-6 effects change during osteoblast differentiation. Cytokine, 2008. 43(2): p. 165-173.
103. Palmqvist, P. , et al., IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-B Ligand, Osteoprotegerin, and Receptor Activator of NF-B in Mouse Calvariae. Journal of Immunology, 2002. 169(6): p. 3353-3362.
104. Lowe, C. , et al., Regulation of Osteoblast Proliferation by Leukemia Inhibitory Factor. Journal of Bone and Mineral Research, 2009. 6(12): p. 1277-1283.
105. Suda, T. , et al., Modulation of Osteoclast Differentiation by Local Factors. Bone, 1995. 17(2): p. 87-91.
106. Li, X. , et al., Role of decorin in the antimyeloma effects of osteoblasts. Blood, 2008. 112(1): p. 159-168.
107. Millay, D. P. , et al., Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013. 499(7458): p. 301-305.
108. Goh, Q. and Millay, D. P. , Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife, 2017. 6, 200007.
109. Hoeben, A. , et al., Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 2004. 56(4): p. 549-580.
110. Roskoski, R. , Vascular endothelial growth factor (VEGF) signaling in tumor progression. Critical Reviews in Oncology Hematology, 2007. 62(3): p. 179-213.
111. Tang, K. , et al., Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory Physiology and Neurobiology, 2010. 170(1): p. 16-22.
112. Amaral, S. L. , et al., Angiogenesis Induced by Electrical Stimulation Is Mediated by Angiotensin II and VEGF. FASEB, 2001. 8(1): p. 57-67.
113. Dhawan, P. and Richmond, A. , Role of CXCL1 in tumorigenesis of melanoma. Leukocyte Biology, 2002. 72(1): p. 9-18.
114. Frydelund-Larsen, L. , et al., Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle. Experimental Physiology, 2007. 92(1): p. 233-240.
115. Nedachi, T. , et al., Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Physiology-Endocrinology and Metabolism, 2008. 295(5): p. 1191-1204.
116. Bae, J. Y. , et al., Effects of detraining and retraining on muscle energy-sensing network and meteorin-like levels in obese mice. Lipids in Health and Disease, 2018. 17(1): p. 97-106.
117. Rao, R. R. , et al., Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell, 2014. 157(6): p. 1279-1291.
118. Catoire, M. , et al., Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proceedings of National Academy of Sciences, 2014. 111(11): p. 1043-1052.
119. Severinsen, M. C. K. and Pedersen, B. K. , Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocrine Reviews, 2020. 41(4) : p. 594-609.
120. Vamvini, M. T. , et al., Irisin mRNA and circulating levels in relation to other myokines in healthy and morbidly obese humans. Europein Journal of Endocrinology, 2013. 169(6): p. 829-834.
121. Peterson, J. M. and Pizza, F. X. , Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. Applied Physiology, 2009. 106(1): p. 130-137.
122. Hayashi, N. , et al., Cyclic stretch induces decorin expression via yes-associated protein in tenocytes: A possible mechanism for hyperplasia in masticatory muscle tendon-aponeurosis hyperplasia. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2019. 31(3): p. 175-179.
123. Meier, E. and Lam, M. T. , Role of Mechanical Stimulation in Stem Cell Differentiation. Biotechnology and Bioengineering, 2016. 3(3): p. 1060-1072.
124. Nedachi, T. , et al., Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Physiology Endocrinology and Metabolism, 2009. 297(4): p. 866-878.
125. Kim, W. , et al., Development of Microfluidic Stretch System for Studying Recovery of Damaged Skeletal Muscle Cells. Micromachines, 2018. 9(12), 671.
126. Ahn, J. , et al., A Microfluidic Stretch System Upregulates Resistance Exercise-Related Pathway. Biochip, 2022. 16(2): p. 158-167.
127. Cell Stretching System, STREX, STB-1400 User Manual.
128. Aguilar-Agon, K. W. , et al., Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. Journal of Cellular Physiology, 2019. 234(12): p. 23547-23558.
129. Player, D. J. , et al., Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle. Biotechnology Letters, 2014. 36(5): p. 1113-1124.
130. Yuan, X. , et al., Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific Reports, 2014. 4: p. 3674-3685.
131. Zhao, M. , Electrical fields in wound healing-An overriding signal that directs cell migration. Seminars in Cell and Developmental Biology, 2009. 20(6): p. 674-682.
132. Kotwal, A. and Schmidt, C. E. , Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials, 2001. 22(10): p. 1055-1064.
133. Chan, Y. C. , et al., Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. Cardiovascular Translational Research, 2013. 6(6): p. 989-999.
134. Nikolic, N. , et al., Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLOS One, 2012. 7(3): p. 33203-33212.
135. Manabe, Y. , et al., Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PLOS One, 2012. 7(12): p. 52592-52601.
136. Chen, W. , et al., In vitro exercise model using contractile human and mouse hybrid myotubes. Science Reports, 2019. 9(1): p. 11914-11922.
137. Chang, J. S. and Kong, I. D. , Irisin prevents dexamethasone-induced atrophy in C2C12 myotubes. Pflugers Archiv-Europein Journal of Physiology, 2020. 472(4): p. 495-502.
138. Evers-van Gogh, I. J. , et al., Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects. Scientific Reports, 2015. 5, 10944.
139. Broholm, C. , et al., LIF is a contraction-induced myokine stimulating human myocyte proliferation. Applied Physiology, 2011. 111(1): p. 251-259.
140. Ikeda, K. , et al., Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation. Regenerative Therapy, 2016. 3: p. 38-44.
141. Fernandez-Verdejo, R. , et al., Activating transcription factor 3 regulates chemokine expression in contracting C2C12 myotubes and in mouse skeletal muscle after eccentric exercise. Biochemical and Biophysiology Research Communications, 2017. 492(2): p. 249-254.
142. Kanzleiter, T. , et al., The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochemical and Biophysical Research Communications, 2014. 450(2): p. 1089-1094.
143. Bhavsar, M. B. , et al., Membrane potential (Vmem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ, 2019. 7, 6341.
144. Zengo, A. N. , et al., In Vivo Effects of Direct Current in the Mandible. Dental Research, 1976. 55(3): p. 383-390.
145. Hsiao, C. W. , et al., Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials, 2013. 34(4): p. 1063-1072.
146. Zhang, Y. , et al., Applying exercise-mimetic engineered skeletal muscle model to interrogate the adaptive response of irisin to mechanical force. IScience, 2022. 25(4), 104135.
147. Raschke, S. , et al., Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLOS One, 2013. 8(4), 62008.
148. Laurens, C. , et al., Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight, 2020. 5(6), 131870.
149. Lee, J. Y. , et al., The effects of myokines on osteoclasts and osteoblasts. Biochemical and Biophysical Research Communications, 2019. 517(4): p. 749-754.
150. Jo, H. , et al., Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomaterialia, 2017. 48: p. 100-109.
151. Liu, Y. , et al., Decorin regulates myostatin and enhances proliferation and differentiation of embryonic myoblasts in Leizhou black duck. Gene, 2021. 804, 145884.
152. Hannon, K. , et al., Differentially Expressed Fibroblast Growth Factors Regulate Skeletal Muscle Development through Autocdne and Paracdne Mechanisms. Journal of Cellular biology, 1996. 132(6): p. 1151-1159.
153. Hirai, T. , et al., Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor alpha in C2C12 myotubes. Biomedicine and Pharmacotherapy, 2019. 109: p. 503-510.
154. Kurdiova, T. , et al., Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin secretion in primary human myotubes. Peptides, 2014. 56: p. 1-7.
155. Jo, C. , et al., Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochimica Biophysica Acta-Molecular Cell Research, 2005. 1743(3): p. 187-197.
156. Shin, C. , Effects of Aerobic Exercise and Diet Control on Myonectin and Fatty Acid Transporters in Skeletal Muscle and Liver Obese Mice. Ph. D. Thesis , Graduate School of Physical Education Seoul National University, 2021.
157. Lv, L. L. , et al., Exosomal CCL2 from Tubular Epithelial Cells Is Critical for Albumin-Induced Tubulointerstitial Inflammation. Journal of American Society of Nephrology, 2018. 29(3): p. 919-935.
158. Wang, C. Z. , et al., Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. Journal of Applied Physiology, 2010. 109(3): p. 840-848.
159. Kameyama, T. , et al., Efficacy of Prednisolone in Generated Myotubes Derived From Fibroblasts of Duchenne Muscular Dystrophy Patients. Frontiers in Pharmacology, 2018. 9, 1402.
160. Fu, M. , et al., Down-regulation of STAT3 enhanced chemokine expression and neutrophil recruitment in biliary atresia. Clinical Science, 2021. 135(7): p. 865-884.
161. Lee, J. O. , et al., The myokine meteorin-like (metrnl) improves glucose tolerance in both skeletal muscle cells and mice by targeting AMPKalpha2. FEBS, 2020. 287(10): p. 2087-2104.
162. Boeyens, J. C. , et al., Effects of omega3- and omega6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: a comparative in vitro study. Nutrients, 2014. 6(7): p. 2584-2601.
163. Yang, B. , et al., Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells. Molecular Medicine Reports, 2012. 5(4): p. 955-958.
164. Li, W. , et al., MicroRNA-505 is involved in the regulation of osteogenic differentiation of MC3T3-E1 cells partially by targeting RUNX2. Journal of Orthopaedic Surgery and Research, 2020. 15(1), 143.
165. Zhai, F. , et al., FGF18 inhibits MC3T3E1 cell osteogenic differentiation via the ERK signaling pathway. Molecular Medicine Reports, 2017. 16(4): p. 4127-4132.
166. Mori, G. , et al., Dental pulp stem cells: Osteogenic differentiation and gene expression. Annals of the New York Academy of Sciences, 2011. 1237: p. 47-52.
167. Farmawati, A. , et al., Characterization of contraction-induced IL-6 up-regulation using contractile C2C12 myotubes. Endocrine, 2013. 60(2): p. 137-147
168. Furuichi, Y. , et al., Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLOS One, 2018. 13(10), 0206146.
169. Huijing, P. A. and Jaspers, R. T. , Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scandinavian Journal of Medicine and Science in Sports, 2005. 15(6): p. 349-380.
170. Bentzinger, C. F. , et al., Cellular dynamics in the muscle satellite cell niche. EMBO Reports, 2013. 14(12): p. 1062-1072.
171. Norheim, F. , et al., Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. American Journal of Physiology and Endocrinology and Metabolism, 2011. 301(5): p. 1013-1021.
172. Aoi, W. , et al., A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut, 2013. 62(6): p. 882-889
173. Brosenitsch, T. A. and Katz, D. M. , Physiological Patterns of Electrical Stimulation Can Induce Neuronal Gene Expression by Activating N-Type Calcium Channels. The Journal of Neuroscience, 2001. 21(8): p. 2571-2579.
174. Johnson, R. W. , et al., Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone, 2014. 64: p. 47-56.
175. Magaro, M. S. , et al., Identification of Sclerostin as a Putative New Myokine Involved in the Muscle-to-Bone Crosstalk. Biomedicines, 2021. 9(1), 71.
176. Komori, T. , Regulation of osteoblast differentiation by Runx2. Advances in Experimental Medicine and Biology, 2010. 658: p. 43-49.
177. Harada, H. , et al., Cbfa1 Isoforms Exert Functional Differences in Osteoblast Differentiation. Journal of Biological Chemistry, 1999. 274(11): p. 6972-6978.
178. Sodek, J. , et al., Regulation of Osteopontin Expression in Osteoblasts. Annals of The New York Academy of Sciences, 1995. 760(1): p. 223-241.
179. Perrien, D. S. , et al., Immunohistochemical Study of Osteopontin Expression During Distraction Osteogenesis in the Rat. Journal of Histochemistry and Cytochemistry, 2002. 50(4): p. 567-574.
180. Chen, Y. , et al., In Vitro Biocompatibility and Osteoblast Differentiation of an Injectable Chitosan/Nano-Hydroxyapatite/Collagen Scaffold. Journal of Nanomaterials, 2012. 2012: p. 1-6.
181. Robison, R. and Soames, K. M. , The possible significance of hexosephosphoric esters in ossification. part II. the phosphoric esterase of ossifying cartilage. Biochemical Journal, 1924. 18(3-4): p. 740-754.
182. Zhou, X. , et al., Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proceedings of National Academy of Sciences, 2010. 107(29): p. 12919-12924.
183. Bellows, C. G. , et al., Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell and Tissue Research, 1999. 197(2): p. 249-259.
184. Gordon, J. A. , et al., Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007. 41(3): p. 462-473.
185. Posa, F F. , et al., The Myokine Irisin Promotes Osteogenic Differentiation of Dental Bud-Derived MSCs. Biology-Basel, 2021. 10(4), 295.
186. Qiao, X. , et al., Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Scientific Reports, 2016. 6(1), 18732.
187. Mera, P. , et al., Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016. 23(6): p. 1078-1092.
188. Kajiya, M. , et al., Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. Journal of Biological Chemistry, 2008. 283(23): p. 16259-16267.
189. Blair, H. C. , et al., Calcium and bone disease. Biofactors, 2011. 37(3): p. 159-167.
190. Mira-Pascual, L. , et al., A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1. International Journal of Molecular Sciences, 2020. 21(2), 538.
191. Corisdeo, S. , et al., New insights into the regulation of cathepsin K gene expression by osteoprotegerin ligand. Biochemical and Biophysical Research Communication, 2001. 285(2): p. 335-339.
192. Sundaram, K. , et al., RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Experiment Cell Research, 2007. 313(1): p. 168-178.
193. Shen, Z. , et al., A novel promoter regulates calcitonin receptor gene expression in human osteoclasts. Biochimica Et Biophysica Acta-gene Structure and Expression, 2007. 1769(11-12): p. 659-667..
194. Zhu, Z. , et al., Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation. International Journal of Clinical and Experimental Pathology, 2014. 7(12): p. 8520-8531..
195. Minkin, C. , Bone Acid Phosphatase: Tartrate-Resistant Acid Phosphatase as a Marker of Osteoclast Function. Calcified Tissue Internation, 1982. 34(1): p. 285-290. |