博碩士論文 109324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.21.34.0
姓名 盧思德(Muhammad Fajri Rusdarto)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用二氧化矽納米粒子氨基表面改性 提高 PEBAX 膜性能
(Enhancement of PEBAX Membrane Performance by Using Silica Nanoparticles Amino Surface Modification)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-28以後開放)
摘要(中) 由於氣體排放自由擴散到大氣中,導致地球表面溫度升高,全球
變暖正在被研究。減少排放的解決方案之一是使用膜技術進行氣體分
離。與傳統分離工藝相比,聚合物膜的應用具有成本效益優勢。混合
基質膜 (MMM) 是複合聚合物膜結構,與最近的研究中的原始聚合
物膜相比,它具有更高性能的潛力。二氧化矽是一種低成本且易於修
飾表面的材料,已在許多應用中使用。此外,根據現有文獻,氨基表
面改性用於改善 CO2氣體與膜之間的相互作用,利用氨基丙基三甲氧
基醚( APTMS)、乙二胺 EDA)和丙烯酸甲酯 MA)兩種不同的表
面改性工藝。改性的結果會在二氧化矽納米粒子表面形成一層薄薄的
氨基層。
在這項工作中,我們使用聚醚嵌段酰胺
(PEBAX®2533) 作為基材聚
合物膜和 N-二甲基乙酰胺 (DMAc) 作為溶劑以及二氧化矽納米粒
子表面改性作為膜的填料來製備 MMM。動態光散射 (DLS)、 X 射
線衍射 (XRD)、傅里葉變換紅外 (FTIR) 和掃描電子顯微鏡 (SEM) 作為表徵儀器對膜和二氧化矽粉末進行表徵。對於 膜的透氣性, CO2 和 N2 用作膜的原料氣,壓力為 2 bar,壓力為 35oC。正如文獻所證
明的,理論上,較高的胺含量會導致 CO2 相互作用增加。預期結果
是與原始膜相比,具有二氧化矽改性的 MMM 具有更高的性能。
摘要(英) Global warming has being investigated during the increasing of earth surface temperature caused by the gas emissions spread freely to the air atmosphere. One of the solutions to decrease emissions is gas separation using membrane technology. The application of polymer membranes has cost-efficiency advantages compared to traditional separation processes. Mixed-matrix membranes (MMMs) are the composite polymer membrane constructs that have demonstrated potential for higher performance compared to the pristine polymer membrane in recent research. Silica is one of the low-cost material and easy to modify the surface that has been used in many application. In addition, the amino surface modification is used to improve the interaction between CO2 gas and membrane by using the two different surface modification process with aminopropyl trimethoxylane (APTMS), ethylenediamine (EDA), and methyl acrylate (MA) according to existing literature. The results of modification will makes a thin amino layer coated on the surface of silica nanoparticles.
In this work, we were preparing the MMMs using polyether-block-amide (PEBAX®2533) as a substrate polymer membrane and N-dimethylacetamide (DMAc) as a solvent also the silica nanoparticles surface modification as a filler of the membrane. Dynamic light scattering (DLS), X-ray diffraction (XRD), fourier transform infrared (FTIR), and scanning electron microscopy (SEM), were used as the characterization instruments to characterize the membrane and silica powder. For membrane gas permeability, CO2 and N2 were using as the feed gas of the membrane at 2 bar of pressure at 35oC atmosphere. Theoretically, the higher amine content should lead to increased CO2 interaction, as proven in the literature. The expected result is the MMMs with silica modification has a higher performance compared to the pristine membrane.
關鍵字(中) ★ 氣體分離
★ 混合基質膜
★ 氨基表面修飾
關鍵字(英) ★ Gas separation
★ mixed matrix membranes
★ amino surface modification
論文目次 摘要
ii
Abstract x
Acknowledgment xii
Table of Contents xiii
List of Figures xvi
List of Table xviii
Chapter 1 Introduction 1
1-1 Background 1
1-2 Literature Review 6
1-2-1 Silica Amino surface modification 6
1-2-2 Influences of membrane and gas separation 9
1-3 Motivation 13
Chapter 2 Experimental 14
2-1 Materials and Reagents 14
2-2 Analysis Instruments and Characterization 14
2-2-1 Fourier Transform Infrared Spectroscopy (FTIR) 14
2-2-2 Dynamic Light Scattering (DLS) 15
2-2-3 X-Ray Diffraction (XRD) 15
2-2-4 Scanning Electron Microscopy (SEM) 16
2-2-5 Single Gas Permeation Measurement............................. 18
2-3 Instruments Used ........................................................... 21
2-4 Synthesis of Silica Surface Modification ......................................... 22
2-4-1 Silica surface first modification (SiO2-APTMS) .................... 22
2-4-2 Silica surface second modification (SiO2-EDA) .............. 22
2-5 Synthesis of Membranes ............................................... 23
2-5-1 Pristine PEBAX Membranes ............................................... 23
2-5-2 Mixed Matrix Membrane ................................................... 24
Chapter 3 Results and Discussion ......................................... 27
3-1 Characterization of Pristine and Modified Silica Nanoparticles 27
3-1-1 FTIR of Pristine and Modified Silica Nanoparticles ................. 27
3-1-2 DLS of Pristine and Modified Silica Nanoparticles ............ 29
3-1-3 XRD of Pristine and Modified Silica Nanoparticles ............. 31
3-1-4 Morphology of Pristine and Modified Silica Nanoparticles 32
3-2 Characterization for Membranes ................................... 36
3-2-1 FTIR of Pristine Membranes & MMMs ........................... 36
3-2-2 XRD of Pristine Membranes & MMMs ........................................ 38
3-2-3 Morphology of Pristine Membranes & MMMs ...................... 39
3-3 Gas Permeation Measurements................................... 40
Chapter 4 Conclusions ................................... 44
Chapter 5 Future Work ................................................................... 45
References .................................................................................................. 46
參考文獻 1. Valérie Masson-Delmotte, P.Z., Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in Climate Change 2021 The Physical Science Basis, P.Z. Valérie Masson-Delmotte, Editor. 2021: Switzerland.
2. Sharma, A., What is COP:A pivotal moment in the fight against climate change., in UN Climate Change Conference 2021 UK (COP26). 2021: England.
3. Scovazzo, P., J. Kieft, D.A. Finan, C. Koval, D. DuBois, et al., Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. Journal of Membrane Science, 2004. 238(1-2): p. 57-63.
4. Panja, P., B. McPherson, and M. Deo, Techno-Economic Analysis of Amine-based CO2 Capture Technology: Hunter Plant Case Study. Carbon Capture Science & Technology, 2022. 3: p. 100041.
5. Bae, J.Y., CO2 Capture by amine-functionalized mesoporous hollow silica. Journal of Nanoscience and Nanotechnology, 2017. 17(10): p. 7418-7422.
6. Fakhar, A., M. Dinari, R. Lammertink, and M. Sadeghi, Enhanced CO2 capture through bulky poly (urethane-urea)-based MMMs containing hyperbranched triazine based silica nanoparticles. Separation and purification technology, 2020. 241: p. 116734.
7. Clarizia, G., P. Bernardo, G. Gorrasi, D. Zampino, and S.C. Carroccio, Influence of the preparation method and photo-oxidation treatment on the thermal and gas transport properties of dense films based on a poly (ether-block-amide) copolymer. Materials, 2018. 11(8): p. 1326.
8. Widakdo, J., Y.-H. Chiao, Y.-L. Lai, A.C. Imawan, F.-M. Wang, et al., Mechanism of a self-assembling smart and electrically responsive PVDF–graphene membrane for controlled gas separation. ACS applied materials & interfaces, 2020. 12(27): p. 30915-30924.
9. Ferrari, M.-C., M. Galizia, M. De Angelis, and G. Sarti, Gas and vapor transport in mixed matrix membranes based on amorphous Teflon AF1600 and AF2400 and fumed silica. Industrial & engineering chemistry research, 2010. 49(23): p. 11920-11935.
10. Ji, T., L. Liu, Y. Sun, Y. Liu, G. Xu, et al., Sub-Zero Temperature Synthesis of Pressure-Resistant ZIF-8 Membrane with Superior C3H6/C3H8 Separation Performance. ACS Materials Letters, 2022. 4: p. 1094-1100.
11. Visser, T., N. Masetto, and M. Wessling, Materials dependence of mixed gas plasticization behavior in asymmetric membranes. Journal of Membrane Science, 2007. 306(1-2): p. 16-28.
12. Yaghi, O.M., G. Li, and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995. 378(6558): p. 703-706.
13. Liu, H., R. Idem, and P. Tontiwachwuthikul, Novel models for correlation of Solubility constant and diffusivity of N2O in aqueous 1-dimethylamino-2-propanol. Chemical Engineering Science, 2019. 203: p. 86-103.
14. Lai, N., L. Tang, N. Jia, D. Qiao, J. Chen, et al., Feasibility study of applying modified nano-SiO2 hyperbranched copolymers for enhanced oil recovery in low-mid permeability reservoirs. Polymers, 2019. 11(9): p. 1483.
15. Lai, N., S. Li, L. Liu, Y. Li, J. Li, et al., Synthesis and rheological property of various modified nano-SiO2/AM/AA hyperbranched polymers for oil displacement. Russian Journal of Applied Chemistry, 2017. 90(3): p. 480-491.
16. Wang, F., S. Gao, J. Pan, X. Li, and J. Liu, Short-chain modified SiO2 with high absorption of organic PCM for thermal protection. Nanomaterials, 2019. 9(4): p. 657.
17. Hahn, M.W., J. Jelic, E. Berger, K. Reuter, A. Jentys, et al., Role of amine functionality for CO2 chemisorption on silica. The Journal of Physical Chemistry B, 2016. 120(8): p. 1988-1995.
18. Huang, H.Y., R.T. Yang, D. Chinn, and C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 2003. 42(12): p. 2427-2433.
19. Yeon, Y.R., Y.J. Park, J.S. Lee, J.W. Park, S.G. Kang, et al., Sc (OTf) 3‐Mediated Silylation of Hydroxy Functional Groups on a Solid Surface: A Catalytic Grafting Method Operating at Room Temperature. Angewandte Chemie, 2008. 120(1): p. 115-118.
20. Xu, Z.P., Q.H. Zeng, G.Q. Lu, and A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 2006. 61(3): p. 1027-1040.
21. Watson, P., A.T. Jones, and D.J. Stephens, Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Advanced drug delivery reviews, 2005. 57(1): p. 43-61.
22. Salgueiriño‐Maceira, V. and M.A. Correa‐Duarte, Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials, 2007. 19(23): p. 4131-4144.
23. Salgueiriño‐Maceira, V., M.A. Correa‐Duarte, M. Spasova, L.M. Liz‐Marzán, and M. Farle, Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials, 2006. 16(4): p. 509-514.
24. Tan, W., K. Wang, X. He, X.J. Zhao, T. Drake, et al., Bionanotechnology based on silica nanoparticles. Medicinal research reviews, 2004. 24(5): p. 621-638.
25. Chiang, C.-H., H. Ishida, and J.L. Koenig, The structure of γ-aminopropyltriethoxysilane on glass surfaces. Journal of Colloid and Interface Science, 1980. 74(2): p. 396-404.
26. Knopp, D., D. Tang, and R. Niessner, Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Analytica chimica acta, 2009. 647(1): p. 14-30.
27. Kallury, K.M., U.J. Krull, and M. Thompson, X-ray photoelectron spectroscopy of silica surfaces treated with polyfunctional silanes. Analytical Chemistry, 1988. 60(2): p. 169-172.
28. Caravajal, G.S., D.E. Leyden, G.R. Quinting, and G.E. Maciel, Structural characterization of (3-aminopropyl) triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance. Analytical Chemistry, 1988. 60(17): p. 1776-1786.
29. Park, K.-W., J.H. Jung, S.-K. Kim, and O.-Y. Kwon, Interlamellar silylation of magadiite by octyl triethoxysilane in the presence of dodecylamine. Applied clay science, 2009. 46(3): p. 251-254.
30. Kallury, K.M., P.M. Macdonald, and M. Thompson, Effect of surface water and base catalysis on the silanization of silica by (aminopropyl) alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance. Langmuir, 1994. 10(2): p. 492-499.
31. Vrancken, K., K. Possemiers, P. Van Der Voort, and E.F. Vansant, Surface modification of silica gels with aminoorganosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995. 98(3): p. 235-241.
32. Zhao, X. and R. Kopelman, Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. The Journal of Physical Chemistry, 1996. 100(26): p. 11014-11018.
33. Fakhar, A., M. Sadeghi, and M. Dinari, Stepwise surface modification of mesoporous silica and its use in poly (urethane‐urea) composite films. Polymer International, 2022. 71(1): p. 107-116.
34. Jung, H.-S., D.-S. Moon, and J.-K. Lee, Quantitative analysis and efficient surface modification of silica nanoparticles. Journal of Nanomaterials, 2012. 2012.
35. Sridhar, S., B. Smitha, and T. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Separation & Purification Reviews, 2007. 36(2): p. 113-174.
36. Iarikov, D.D. and S.T. Oyama, Review of CO2/CH4 separation membranes, in Membrane science and technology. 2011, Elsevier. p. 91-115.
37. Baker, R.W., Membrane technology and applications. 2012: John Wiley & Sons.
38. Morooka, S. and K. Kusakabe, Microporous inorganic membranes for gas separation. MRS bulletin, 1999. 24(3): p. 25-29.
39. Koresh, J. and A. Soffer, Study of molecular sieve carbons. Part 2.—Estimation of cross-sectional diameters of non-spherical molecules. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980. 76: p. 2472-2485.
40. Shekhawat, D., D.R. Luebke, and H.W. Pennline, A review of carbon dioxide selective membranes: A topical report. 2003.
41. Hosseini, S.S., Y. Li, T.-S. Chung, and Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007. 302(1-2): p. 207-217.
42. Matteucci, S., V.A. Kusuma, S.D. Kelman, and B.D. Freeman, Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites. Polymer, 2008. 49(6): p. 1659-1675.
43. Matteucci, S., R.D. Raharjo, V.A. Kusuma, S. Swinnea, and B.D. Freeman, Gas permeability, solubility, and diffusion coefficients in 1, 2-polybutadiene containing magnesium oxide. Macromolecules, 2008. 41(6): p. 2144-2156.
44. Matteucci, S., V.A. Kusuma, S. Swinnea, and B.D. Freeman, Gas permeability, solubility and diffusivity in 1, 2-polybutadiene containing brookite nanoparticles. Polymer, 2008. 49(3): p. 757-773.
45. Matteucci, S., V.A. Kusuma, D. Sanders, S. Swinnea, and B.D. Freeman, Gas transport in TiO2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008. 307(2): p. 196-217.
46. Shao, L., J. Samseth, and M.-B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations. Journal of Membrane Science, 2009. 326(2): p. 285-292.
47. Shao, L., J. Samseth, and M.B. Hägg, Crosslinking and stabilization of nanoparticle filled poly (1‐trimethylsilyl‐1‐propyne) nanocomposite membranes for gas separations. Journal of applied polymer science, 2009. 113(5): p. 3078-3088.
48. Moghadam, F., M. Omidkhah, E. Vasheghani-Farahani, M. Pedram, and F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011. 77(1): p. 128-136.
49. Gomes, D., S.P. Nunes, and K.-V. Peinemann, Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites. Journal of Membrane Science, 2005. 246(1): p. 13-25.
50. Stetefeld, J., S.A. McKenna, and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 2016. 8(4): p. 409-427.
51. Gonon, M., Case Studies in the X-ray Diffraction of Ceramics, in Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Editor. 2021, Elsevier: Oxford. p. 560-577.
52. Akhtar, K., S.A. Khan, S.B. Khan, and A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, in Handbook of Materials Characterization, S.K. Sharma, Editor. 2018, Springer International Publishing: Cham. p. 113-145.
53. Song, Q., S. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, et al., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012. 5(8): p. 8359-8369.
54. BingXu Chen, B.K.C., Influences of Defect Degree in Zirconium Metal-Organic Framework on Mixed Matrix Membrane Performance, in Chemical and Materials Engineering 2021, National Central University: Taoyuan, Taiwan.
55. Nasr-Esfahani, M., I. Mohammadpoor-Baltork, A.R. Khosropour, M. Moghadam, V. Mirkhani, et al., Synthesis and characterization of Cu (II) containing nanosilica triazine dendrimer: A recyclable nanocomposite material for the synthesis of benzimidazoles, benzothiazoles, bis-benzimidazoles and bis-benzothiazoles. Journal of Molecular Catalysis A: Chemical, 2013. 379: p. 243-254.
56. Lai, N., Q. Zhu, D. Qiao, K. Chen, L. Tang, et al., CO2 Capture with Absorbents of Tertiary Amine Functionalized Nano–SiO2. Frontiers in chemistry, 2020. 8: p. 146.
57. Jing, Y., L. Wei, Y. Wang, and Y. Yu, Synthesis, characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers. Microporous and Mesoporous Materials, 2014. 183: p. 124-133.
58. Liang, Z., B. Fadhel, C.J. Schneider, and A.L. Chaffee, Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials, 2008. 111(1-3): p. 536-543.
59. Zhu, T., X. Yang, Y. Zheng, X. He, F. Chen, et al., Preparation of poly (ether‐block‐amide)/poly (amide‐co‐poly (propylene glycol)) random copolymer blend membranes for CO2/N2 separation. Polymer Engineering & Science, 2019. 59(S1): p. E14-E23.
60. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): p. 671-675.
61. Zhao, Y., Y. Pan, N. Nitin, and R.V. Tikekar, Enhanced stability of curcumin in colloidosomes stabilized by silica aggregates. LWT-food science and technology, 2014. 58(2): p. 667-671.
62. Knozowska, K., G. Li, W. Kujawski, and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. Journal of Membrane Science, 2020. 599: p. 117814.
63. Nafisi, V. and M.-B. Hägg, Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15643-15652.
64. Rasekh, A. and A. Raisi, Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Separation and Purification Technology, 2021. 275: p. 119149.
指導教授 張博凱(Bor Kae Chang) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明