參考文獻 |
1. Valérie Masson-Delmotte, P.Z., Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in Climate Change 2021 The Physical Science Basis, P.Z. Valérie Masson-Delmotte, Editor. 2021: Switzerland.
2. Sharma, A., What is COP:A pivotal moment in the fight against climate change., in UN Climate Change Conference 2021 UK (COP26). 2021: England.
3. Scovazzo, P., J. Kieft, D.A. Finan, C. Koval, D. DuBois, et al., Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. Journal of Membrane Science, 2004. 238(1-2): p. 57-63.
4. Panja, P., B. McPherson, and M. Deo, Techno-Economic Analysis of Amine-based CO2 Capture Technology: Hunter Plant Case Study. Carbon Capture Science & Technology, 2022. 3: p. 100041.
5. Bae, J.Y., CO2 Capture by amine-functionalized mesoporous hollow silica. Journal of Nanoscience and Nanotechnology, 2017. 17(10): p. 7418-7422.
6. Fakhar, A., M. Dinari, R. Lammertink, and M. Sadeghi, Enhanced CO2 capture through bulky poly (urethane-urea)-based MMMs containing hyperbranched triazine based silica nanoparticles. Separation and purification technology, 2020. 241: p. 116734.
7. Clarizia, G., P. Bernardo, G. Gorrasi, D. Zampino, and S.C. Carroccio, Influence of the preparation method and photo-oxidation treatment on the thermal and gas transport properties of dense films based on a poly (ether-block-amide) copolymer. Materials, 2018. 11(8): p. 1326.
8. Widakdo, J., Y.-H. Chiao, Y.-L. Lai, A.C. Imawan, F.-M. Wang, et al., Mechanism of a self-assembling smart and electrically responsive PVDF–graphene membrane for controlled gas separation. ACS applied materials & interfaces, 2020. 12(27): p. 30915-30924.
9. Ferrari, M.-C., M. Galizia, M. De Angelis, and G. Sarti, Gas and vapor transport in mixed matrix membranes based on amorphous Teflon AF1600 and AF2400 and fumed silica. Industrial & engineering chemistry research, 2010. 49(23): p. 11920-11935.
10. Ji, T., L. Liu, Y. Sun, Y. Liu, G. Xu, et al., Sub-Zero Temperature Synthesis of Pressure-Resistant ZIF-8 Membrane with Superior C3H6/C3H8 Separation Performance. ACS Materials Letters, 2022. 4: p. 1094-1100.
11. Visser, T., N. Masetto, and M. Wessling, Materials dependence of mixed gas plasticization behavior in asymmetric membranes. Journal of Membrane Science, 2007. 306(1-2): p. 16-28.
12. Yaghi, O.M., G. Li, and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995. 378(6558): p. 703-706.
13. Liu, H., R. Idem, and P. Tontiwachwuthikul, Novel models for correlation of Solubility constant and diffusivity of N2O in aqueous 1-dimethylamino-2-propanol. Chemical Engineering Science, 2019. 203: p. 86-103.
14. Lai, N., L. Tang, N. Jia, D. Qiao, J. Chen, et al., Feasibility study of applying modified nano-SiO2 hyperbranched copolymers for enhanced oil recovery in low-mid permeability reservoirs. Polymers, 2019. 11(9): p. 1483.
15. Lai, N., S. Li, L. Liu, Y. Li, J. Li, et al., Synthesis and rheological property of various modified nano-SiO2/AM/AA hyperbranched polymers for oil displacement. Russian Journal of Applied Chemistry, 2017. 90(3): p. 480-491.
16. Wang, F., S. Gao, J. Pan, X. Li, and J. Liu, Short-chain modified SiO2 with high absorption of organic PCM for thermal protection. Nanomaterials, 2019. 9(4): p. 657.
17. Hahn, M.W., J. Jelic, E. Berger, K. Reuter, A. Jentys, et al., Role of amine functionality for CO2 chemisorption on silica. The Journal of Physical Chemistry B, 2016. 120(8): p. 1988-1995.
18. Huang, H.Y., R.T. Yang, D. Chinn, and C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 2003. 42(12): p. 2427-2433.
19. Yeon, Y.R., Y.J. Park, J.S. Lee, J.W. Park, S.G. Kang, et al., Sc (OTf) 3‐Mediated Silylation of Hydroxy Functional Groups on a Solid Surface: A Catalytic Grafting Method Operating at Room Temperature. Angewandte Chemie, 2008. 120(1): p. 115-118.
20. Xu, Z.P., Q.H. Zeng, G.Q. Lu, and A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 2006. 61(3): p. 1027-1040.
21. Watson, P., A.T. Jones, and D.J. Stephens, Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Advanced drug delivery reviews, 2005. 57(1): p. 43-61.
22. Salgueiriño‐Maceira, V. and M.A. Correa‐Duarte, Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials, 2007. 19(23): p. 4131-4144.
23. Salgueiriño‐Maceira, V., M.A. Correa‐Duarte, M. Spasova, L.M. Liz‐Marzán, and M. Farle, Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials, 2006. 16(4): p. 509-514.
24. Tan, W., K. Wang, X. He, X.J. Zhao, T. Drake, et al., Bionanotechnology based on silica nanoparticles. Medicinal research reviews, 2004. 24(5): p. 621-638.
25. Chiang, C.-H., H. Ishida, and J.L. Koenig, The structure of γ-aminopropyltriethoxysilane on glass surfaces. Journal of Colloid and Interface Science, 1980. 74(2): p. 396-404.
26. Knopp, D., D. Tang, and R. Niessner, Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Analytica chimica acta, 2009. 647(1): p. 14-30.
27. Kallury, K.M., U.J. Krull, and M. Thompson, X-ray photoelectron spectroscopy of silica surfaces treated with polyfunctional silanes. Analytical Chemistry, 1988. 60(2): p. 169-172.
28. Caravajal, G.S., D.E. Leyden, G.R. Quinting, and G.E. Maciel, Structural characterization of (3-aminopropyl) triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance. Analytical Chemistry, 1988. 60(17): p. 1776-1786.
29. Park, K.-W., J.H. Jung, S.-K. Kim, and O.-Y. Kwon, Interlamellar silylation of magadiite by octyl triethoxysilane in the presence of dodecylamine. Applied clay science, 2009. 46(3): p. 251-254.
30. Kallury, K.M., P.M. Macdonald, and M. Thompson, Effect of surface water and base catalysis on the silanization of silica by (aminopropyl) alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance. Langmuir, 1994. 10(2): p. 492-499.
31. Vrancken, K., K. Possemiers, P. Van Der Voort, and E.F. Vansant, Surface modification of silica gels with aminoorganosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995. 98(3): p. 235-241.
32. Zhao, X. and R. Kopelman, Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. The Journal of Physical Chemistry, 1996. 100(26): p. 11014-11018.
33. Fakhar, A., M. Sadeghi, and M. Dinari, Stepwise surface modification of mesoporous silica and its use in poly (urethane‐urea) composite films. Polymer International, 2022. 71(1): p. 107-116.
34. Jung, H.-S., D.-S. Moon, and J.-K. Lee, Quantitative analysis and efficient surface modification of silica nanoparticles. Journal of Nanomaterials, 2012. 2012.
35. Sridhar, S., B. Smitha, and T. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Separation & Purification Reviews, 2007. 36(2): p. 113-174.
36. Iarikov, D.D. and S.T. Oyama, Review of CO2/CH4 separation membranes, in Membrane science and technology. 2011, Elsevier. p. 91-115.
37. Baker, R.W., Membrane technology and applications. 2012: John Wiley & Sons.
38. Morooka, S. and K. Kusakabe, Microporous inorganic membranes for gas separation. MRS bulletin, 1999. 24(3): p. 25-29.
39. Koresh, J. and A. Soffer, Study of molecular sieve carbons. Part 2.—Estimation of cross-sectional diameters of non-spherical molecules. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980. 76: p. 2472-2485.
40. Shekhawat, D., D.R. Luebke, and H.W. Pennline, A review of carbon dioxide selective membranes: A topical report. 2003.
41. Hosseini, S.S., Y. Li, T.-S. Chung, and Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007. 302(1-2): p. 207-217.
42. Matteucci, S., V.A. Kusuma, S.D. Kelman, and B.D. Freeman, Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites. Polymer, 2008. 49(6): p. 1659-1675.
43. Matteucci, S., R.D. Raharjo, V.A. Kusuma, S. Swinnea, and B.D. Freeman, Gas permeability, solubility, and diffusion coefficients in 1, 2-polybutadiene containing magnesium oxide. Macromolecules, 2008. 41(6): p. 2144-2156.
44. Matteucci, S., V.A. Kusuma, S. Swinnea, and B.D. Freeman, Gas permeability, solubility and diffusivity in 1, 2-polybutadiene containing brookite nanoparticles. Polymer, 2008. 49(3): p. 757-773.
45. Matteucci, S., V.A. Kusuma, D. Sanders, S. Swinnea, and B.D. Freeman, Gas transport in TiO2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008. 307(2): p. 196-217.
46. Shao, L., J. Samseth, and M.-B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations. Journal of Membrane Science, 2009. 326(2): p. 285-292.
47. Shao, L., J. Samseth, and M.B. Hägg, Crosslinking and stabilization of nanoparticle filled poly (1‐trimethylsilyl‐1‐propyne) nanocomposite membranes for gas separations. Journal of applied polymer science, 2009. 113(5): p. 3078-3088.
48. Moghadam, F., M. Omidkhah, E. Vasheghani-Farahani, M. Pedram, and F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011. 77(1): p. 128-136.
49. Gomes, D., S.P. Nunes, and K.-V. Peinemann, Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites. Journal of Membrane Science, 2005. 246(1): p. 13-25.
50. Stetefeld, J., S.A. McKenna, and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 2016. 8(4): p. 409-427.
51. Gonon, M., Case Studies in the X-ray Diffraction of Ceramics, in Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Editor. 2021, Elsevier: Oxford. p. 560-577.
52. Akhtar, K., S.A. Khan, S.B. Khan, and A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, in Handbook of Materials Characterization, S.K. Sharma, Editor. 2018, Springer International Publishing: Cham. p. 113-145.
53. Song, Q., S. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, et al., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012. 5(8): p. 8359-8369.
54. BingXu Chen, B.K.C., Influences of Defect Degree in Zirconium Metal-Organic Framework on Mixed Matrix Membrane Performance, in Chemical and Materials Engineering 2021, National Central University: Taoyuan, Taiwan.
55. Nasr-Esfahani, M., I. Mohammadpoor-Baltork, A.R. Khosropour, M. Moghadam, V. Mirkhani, et al., Synthesis and characterization of Cu (II) containing nanosilica triazine dendrimer: A recyclable nanocomposite material for the synthesis of benzimidazoles, benzothiazoles, bis-benzimidazoles and bis-benzothiazoles. Journal of Molecular Catalysis A: Chemical, 2013. 379: p. 243-254.
56. Lai, N., Q. Zhu, D. Qiao, K. Chen, L. Tang, et al., CO2 Capture with Absorbents of Tertiary Amine Functionalized Nano–SiO2. Frontiers in chemistry, 2020. 8: p. 146.
57. Jing, Y., L. Wei, Y. Wang, and Y. Yu, Synthesis, characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers. Microporous and Mesoporous Materials, 2014. 183: p. 124-133.
58. Liang, Z., B. Fadhel, C.J. Schneider, and A.L. Chaffee, Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials, 2008. 111(1-3): p. 536-543.
59. Zhu, T., X. Yang, Y. Zheng, X. He, F. Chen, et al., Preparation of poly (ether‐block‐amide)/poly (amide‐co‐poly (propylene glycol)) random copolymer blend membranes for CO2/N2 separation. Polymer Engineering & Science, 2019. 59(S1): p. E14-E23.
60. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): p. 671-675.
61. Zhao, Y., Y. Pan, N. Nitin, and R.V. Tikekar, Enhanced stability of curcumin in colloidosomes stabilized by silica aggregates. LWT-food science and technology, 2014. 58(2): p. 667-671.
62. Knozowska, K., G. Li, W. Kujawski, and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. Journal of Membrane Science, 2020. 599: p. 117814.
63. Nafisi, V. and M.-B. Hägg, Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15643-15652.
64. Rasekh, A. and A. Raisi, Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Separation and Purification Technology, 2021. 275: p. 119149. |