博碩士論文 109623001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.117.152.251
姓名 林憲邦(Sian-Bang Lin)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 伽利略系統 E1 頻段軟體定義無線電接收機開發與實作
相關論文
★ 運用模糊幾何理論對於Es層做自動分類及分析★ GPS/MET及中壢DPS電離層遮蔽觀測比較
★ 結合NNSS與GPS/MET衛星資料於電離層斷層掃描觀測及其比較★ 電離圖判讀與流星研究
★ 中壢動態式電離層觀測儀(dynasonde)訊號處理★ 利用動態式電離層觀測儀觀測不規則體小尺度變化
★ GPS/MET遮蔽觀測與IRI模式foF2和hmF2之比較★ GPS信號遮蔽觀測於電離層斷層掃描之模擬研究
★ ITS30-LITN觀測電離層不規則體閃爍現象★ 中壢動態式電離層探測儀系統控制卡(CRAM Card)重建及測試
★ 運用ITS系統對於低緯度電離層斷層掃瞄的 模擬與研究★ GPS/MET遮蔽觀測foF2 numerical mapping與IRI 模式之比較分析
★ 低緯度電離層不規則體之結構研究★ 利用福衛三號掩星觀測資料研究電離層增層現象
★ 運用臺灣自主電離層數值模式研究電離層赤道異常現象★ 臺灣第二代動態式電離層探測儀之建置與資料處理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上,無線電收發機是透過設計電子電路來完成的,但隨著通訊協定世代更迭的速度變快,電子電路設計的速度已逐漸跟不上,再加上晶片運算效能的提升,透過軟體方法實現通訊系統設計已成為可能,進而發展出軟體定義無線電(Software Defined Radio, SDR)的概念。
本篇論文之伽利略系統E1頻段軟體定義無線電接收機演算法是基於先前全球定位系統(Global Positioning System, GPS) L1頻段軟體定義無線電接收機演算法進行開發,因此除了針對軟體定義無線電接收機及伽利略系統(GALILEO)之訊號組成進行介紹外,也會針對全球定位系統及衛星基增強系統(Satellite-Based Augmentation System, SBAS)的訊號組成進行介紹。本軟體定義無線電接收機主要透過模稜函數(Ambiguity Function)與同調積分(Coherent Integration)兩項技術對伽利略系統訊號進行捕獲與追蹤。最後將計算結果與NASA JPL NCUT標準測站之RINEX測量值進行比對驗證。經驗證後確定本軟體定義無線電接收機能成功接收到伽利略系統E1頻段之訊號,但仍需透過增加相位測量等手段來增加訊號之穩定性。
摘要(英) Traditionally, radio receivers are completed by designing electronic circuits. However, with the increase of signal design complexity, the speed of electronic circuit design has gradually been unable to keep up. But, by the improvement of chip computing performance, and the development of wideband antenna, the concept of software-defined radio (SDR) has been developed. Advantages of SDR is its flexibility, only the part of the digital signal processing that needs to be changed to match the target signal to receive the target signal.
The GALILEO E1-band SDR algorithm in this thesis is developed based on the previous Global Positioning System L1-band SDR algorithm. This SDR algorithm to acquire and track GALILEO signals mainly through two technologies, Ambiguity Function and Coherent Integration. Use ambiguity function to find out the chip delay and Doppler shift of signal, and use coherent integration to improve the signal-to-noise ratio.
The results calculated by the SDR are compared and verified with the RINEX measurement values of the NASA JPL NCUT standard station. After verification, it is determined that the SDR can successfully receive the signal of the GALILEO E1-band, but it is still necessary to increase the stability of the signal by adding phase measurement to the algorithm.
關鍵字(中) ★ 伽利略系統
★ 全球定位系統
★ 軟體定義無線電
關鍵字(英) ★ GALILEO
★ GPS
★ Software Defined Reciever
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 緒論 1
1.1 研究背景 1
1.2 全球導航衛星系統簡介 2
1.3 軟體定義無線電接收機簡介 5
1.4 章節簡介 5
二、 全球導航衛星系統訊號組成 7
2.1 全球定位系統 7
2.1.1 C/A碼 8
2.2 星基增強系統 16
2.3 伽利略系統 18
2.3.1 測距碼 20
2.3.2 二元偏移載波與複合二元偏移載波 20
2.3.3 伽利略系統E1 OS訊號特性 23
三、 軟體定義無線電接收機系統架構 24
3.1 天線 24
3.2 USRP 24
3.3 GNSS-SDR 25
四、 軟體定義無線電接收機演算法 26
4.1 訊號捕獲演算法 26
4.1.1 模稜函數 26
4.1.2 同調積分 29
4.2 TLE及衛星軌道推算器 32
4.2.1 TLE 32
4.2.2 基本衛星軌道推算器 34
4.2.3 視野判斷演算法 46
4.3 演算法小結 47
五、 軟體定義無線電接收機驗證與結果 49
5.1 軟體定義無線電接收機驗證 49
5.1.1 軟體定義無線電接收機使用資料 49
5.1.2 NCUT測站與RINEX檔案格式 50
5.2 驗證結果 52
六、 討論與結論 58
6.1 討論 58
6.2 結論 58
參考文獻 60
參考文獻 1. Tsai, L.-C., et al., Coastal sea-surface wave measurements using software-based GPS reflectometers in Lanyu, Taiwan. GPS Solutions, 2021. 25(4).
2. A History Of Astronomy at Illinois. [cited 2022 Aug, 2]; Available from: https://astro.illinois.edu/newsroom/history-astronomy-illinois.
3. Guier, W.H. and G.C. Weiffenbach, Theoretical Analysis of Doppler Radio Signals from Earth Satellites, in Nature. 1958, Springer Science and Business Media LLC. p. 1525-1526.
4. Guier, W. and G. Weiffenbach, A Satellite Doppler Navigation System. Proceedings of the IRE, 1960. 48(4): p. 507-516.
5. 20th Anniversary of Initial Operational Capability of the GPS Constellation. 2014 [cited 2022 8/17]; Available from: https://www.afspc.af.mil/News/Article-Display/Article/731396/20th-anniversary-of-initial-operational-capability-of-the-gps-constellation/.
6. GPS Modernization. 2017 [cited 2022 8/17]; Available from: https://www.gps.gov/systems/gps/modernization/.
7. About GLONASS. [cited 2022 8/17]; Available from: https://www.glonass-iac.ru/en/about_glonass/.
8. Cyclone Global Navigation Satellite System Mission Objectives. [cited 2022 8/17]; Available from: https://podaac.jpl.nasa.gov/CYGNSS?tab=mission-objectives.
9. Buracchini, E., The software radio concept. IEEE Communications Magazine, 2000. 38(9): p. 138-143.
10. Flores, A., Navstar GPS Space Segment/Navigation User Interfaces. 2021: Global Positioning Systems Directorate.
11. L1 C/A PRN CODE ASSIGNMENTS. Global Positioning Systems Directorate.
12. EUROPEAN GNSS (GALILEO) OPEN SERVICE SIGNAL-IN-SPACE INERFACE CONTROL DOCUMENT Issue 2.0. 2021: European GNSS Service Centre.
13. Simona Lohan, E. Analytical performance of CBOC-modulated Galileo E1 signal using sine BOC(1,1) receiver for mass-market applications. IEEE.
14. VEXXIS® GNSS-500 Series Antennas. [cited 2022 8/17]; Available from: https://novatel.com/products/gps-gnss-antennas/vexxis-series-antennas/vexxis-gnss-500-series-antennas.
15. USRP B200. [cited 2022 8/17]; Available from: https://www.ettus.com/all-products/ub200-kit/.
16. Fernández-Prades, C., et al., GNSS-SDR: An open source tool for researchers and developers. Vol. 2. 2011.
17. Tsui, J.B.-Y., Fundamentals of Global Positioning System Receivers: A Software Approach, Second Edition. 2005.
18. Kai Borre, D.M.A., Nicolaj Bertelsen, Peter Rinder, Søren Holdt Jensen, A Software-Defined GPS and Galileo Receiver A Single-Frequency Approach. 1 ed. Applied and Numerical Harmonic Analysis. 2007: Birkhäuser Boston, MA.
19. Fernandez-Prades, C., et al. An open source Galileo E1 software receiver. IEEE.
20. Vallado, D., Methods of Astrodynamics, a Computer Approach. 1991: p. 359.
21. Vallado, D.A., Fundamentals of astrodynamics and applications. Vol. 12. 2001: Springer Science & Business Media.
22. Stein, S., Algorithms for ambiguity function processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981. 29(3): p. 588-599.
23. Kelso, T.S. NORAD Two-Line Element Set Format. [cited 2022 8/17]; Available from: https://celestrak.org/NORAD/documentation/tle-fmt.php.
24. Kelso, T.S. Frequently Asked Questions: Two-Line Element Set Format. [cited 2022 8/17]; Available from: https://celestrak.org/columns/v04n03/.
25. DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984. 2014, NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY.
26. Kaplan, G.H., The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models: Explanation and Implementation, ed. U.S.N. Observatory. 2005, Washington, D.C.
27. Station ID : NCUT. [cited 2022 8/17]; Available from: http://geodesy.unr.edu/NGLStationPages/stations/NCUT.sta.
28. Werner Gurtner, L.E., RINEX: The Receiver Independent Exchange Format Version 2.11. 2007: IGS/RTCM RINEX Working Group.
指導教授 蔡龍治(Lung-Chih Tsai) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明