博碩士論文 86344009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.101.75
姓名 蔡蕙逢(Hui-Feng Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 資料儲存系統之渦輪碼與訊號處理研究
(Study of Turbo Coding and Signal Processing for Data Storage Systems)
相關論文
★ 插值時序恢復之研究與應用★ 資料儲存系統之通道研究
★ 全數位化π/4-shifted DQPSK 之分析與實現★ 校園多媒體無線通訊系統通道編∕解碼器之研究
★ 資料儲存系統之調變碼研究★ 利用紅外線傳輸動態影像(H.263)之研究
★ 數位式上昇餘弦函數濾波器最佳化設計★ 資料儲存PRML通道系統之全數位插值時序恢復研究及設計
★ IrTran-P環境下之JPEG影像錯誤偵測與改善★ FIR濾波器於二冪次係數空間之研究與分析
★ 影像縮放之插值器研究★ 動態影像在紅外線中傳輸與錯誤消除技術之研究
★ 紅外線協定控制器之研究與設計★ 無失真資料壓縮之研究
★ 空時碼系統之研究★ 正交分頻多重接取通訊系統之資源配置演算法設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在論文中,我們提出一種符合通道特性的碼,稱為TMTR調變碼,此碼在數位記錄通道中具有優異的編碼增益。文中建議新的TMTR調變碼,運用在光記錄通道系統中,用以取代傳統EFMPlus碼,除了碼率為 高於EFMPlus碼外,在低頻部份,也同樣具有更低功率頻譜密度。另外,在編解碼方面,我們使用列舉式(Enumerating)編解碼,將符合限制條件的碼字與整數做一對一的映射。
在高傳輸速度的要求下,對一個有限頻寬的數位資料,同時考慮有雜訊及ISI (Intersymbol Interference)的通道,常需要更有效率的訊號偵測技術,以提供解決ISI的最佳方法。在論文中,引進渦輪碼(Turbo Code)作為數位資料儲存系統的錯誤更正碼,利用其優良的錯誤更正能力使得讀回資料的錯誤率降低,其次結合具有編碼增益之TMTR調變碼(碼率為 )成為一個串接碼(Serially Concatenated Code)系統,此外,為了顯示渦輪碼在解碼方面的特點,我們定義兩個名詞首先為外圈迴圈(Outer Iteration):意指串接碼的內層碼(MAP偵測器)跟外層碼(渦輪碼)之間消息的更新,其次為內圈迴圈(Inner Iteration):意指渦輪碼兩個RSC解碼器之間消息的更新。研究發現,結合了渦輪碼、TMTR碼以及光學記錄通道,形成一串接碼,藉由內圈迴圈以及外圈迴圈之間消息的更新,使得通道解碼偵測器在偵測時也能獲得更新後的先驗消息,因而渦輪碼的解碼效能也更加顯著。
另外,在系統時序恢復研究、設計方面,論文中探討Raised Cosine(升餘弦)與其他常用全數位插值時序恢復(Interpolator Timing Recovery)方法之MMSE、Sinc及Cubic的比較,包括電腦時間模擬的估算、硬體複雜度的計算、位元錯誤率效能分析等。在相似的計算複雜度上,升餘弦插值器的位元錯誤效能優於其他插值器;另外,表現優異的升餘弦插值器應用在數位記錄密度的儲存系統之時間恢復研究及設計,也獲得相同的效果。這一套全數位化的插值時序恢復運作機制不只適用於一般通訊系統的接收端,它也適用於數位記錄通道系統。
摘要(英) This article proposes several approaches to enhance the data storage system performance by coding and interpolated timing recovery. In this dissertation, a new method for the magnetic recording channel construction employing TMTR codes and the optical recording channel using TMTR codes is proposed. This code can achieve better timing recovery performance compared to the previously proposed method.
The modulation code used in a digital versatile disc (DVD) recording system is referred to as the EFMPlus code with a rate of . In this work, we present a new time-varying maximum transition run code (TMTR) to replace the conventional EFMPlus code for DVD recording systems, with a rate higher than the EFMPlus code and a lower power spectral density (PSD) at low frequencies. Computer simulations indicate that the proposed TMTR code outperforms the EFMPlus code when applied to a partial response optical recording channel. The turbo (iterative) decoding for the TMTR-coded partial response optical recording channel is also investigated, in which the TMTR-coded partial response channel is viewed as the inner code and two parallel concatenated convolutional codes (PCCC’s) as the outer code. The error performance of the proposed coding scheme is investigated and compared with the conventional coding scheme, in which both the TMTR code and partial response channel are independently decoded or detected.
In this dissertation we also propose using interpolated timing recovery (ITR) was substituted for the conventional voltage controlled oscillator (VCO) timing recovery method in the magnetic recording channel. In this work an interpolator that uses the raised cosine pulse is applied to digital timing recovery. This study indicates that the raised cosine interpolator outperforms other commonly used interpolators in digital timing recovery such as sinc, polynomial and MMSE interpolators with a similar computational complexity. Simulation results show that the raised cosine interpolator is superior in error performance to other interpolators with a similar computational complexity. The superiority of the raised cosine interpolator is demonstrated on a digital recording channels. The main advantages of the raised cosine interpolator are that it is simpler and leads to fully digital implementation.
關鍵字(中) ★ 資料儲存系統
★ 渦輪碼
★ 部份反應
關鍵字(英) ★ data storage systems
★ turbo coding
★ partial response
論文目次 Chapter 1 Introduction………………………………………………………………1
1.1 Channel Modeling for Digital Recording Systems………………………2
1.2 Synopsis of Chapter …………………………………………………………4
Chapter 2 TMTR Codes for Partial Response Recording Channels……………8
2.1 Introduction……………………………………………………………………8
2.2 Error Event for Digital Recording Channels……………………………10
2.3 TMTR Codes for Digital Recording Channels ……………………………14
2.4 Code Construction for TMTR Codes…………………………………………18
2.5 Enumerating Encoder/Decoder for Digital Recording Channels………21
2.6 Performance Comparison for Digital Recording Channels ……………25
2.7 Power Spectral Density of Rate 8/11 TMTR code ………………………27
2.8 Summary …………………………………………………………………………31
Chapter 3 Turbo Decoding for Optical Recording Channels …………………54
3.1 Introduction……………………………………………………………………54
3.2 Turbo Codes and Turbo equalization………………………………………55
3.2.1 Turbo Codes ……………………………………………………………55
3.2.2 Turbo Equalization for Recording Channels ……………………56
3.3 Turbo Decoding for TMTR-Coded Partial Response Channel……………56
3.3.1 Inner Code: TMTR-Coded Partial Response Channel ……………57
3.3.2 Outer Code: Parallel Concatenated Convolutional Code (PCCC)59
3.4 Simulation Results……………………………………………………………59
3.4.1 Bit Error Rate…………………………………………………………60
3.4.2 Iteration Effect………………………………………………………60
3.5 Summary …………………………………………………………………………61
Chapter 4 Interpolated Timing Recovery……………70
4.1 Introduction……………………………………………………………………70
4.2 Interpolation Filter using Raised Cosine Pulse………………………71
4.3 Truncation Window Effect on Raised Cosine Interpolator……………73
4.3.1 Aliasing Effect for Truncated Windows …………………………75
4.3.2 Mean Square Error (MSE) Performance for truncated Windows 75
4.3.3 Error Performance for Truncated Windows ………………………77
4.4 Application to General Pulse Amplitude Modulation Channel ………77
4.4.1 Aliasing Effect for Truncated Raised Cosine Filters ………78
4.4.2 Mean Square Error (MSE) Performance ……………………………78
4.4.3 Computational Complexity……………………………………………79
4.4.4 Performance Comparison………………………………………………81
4.5 Application to Partial Response Recording Channels…………………81
4.5.1 Aliasing Effects for PRML Channel ………………………………81
4.5.2 Mean Square Error Performance for PRML Channel………………82
4.5.3 Error Performance for PRML Channel………………………………83
4.6 Summary …………………………………………………………………………87
Chapter 5 Conclusions………………………………………………………………101
REFERENCES…………………………………………………………103
Publication List…………………………………………………………107
參考文獻 [1] E. Berlekmap, “The technology of error-correcting codes,” Proc. IEEE, vol. 68, no. 5, pp. 564-593, May 1980.
[2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379-423, July 1948.
[3] H. K. Thapar and A. M. Patel, “A class of partial response system for increased storage density in magnetic recording,” IEEE Trans. Magn., vol.23,no.5, pp.3666-3668, Sept. 1987.
[4] C. H. Lee and Y. S. Cho, “A PRML detector for a DVDR system,” IEEE Trans. Cons. Electron., vol. 45, no. 2, pp. 278-284, May 1999.
[5] K.A.S. Immink, “EFMPlus: The coding format of the multimedia compact disc,” IEEE Trans. Cons. Electron., vol. 41, no. 3, pp. 491-497, Aug. 1995.
[6] J. Moon and B. Brickner, “Maximum transition run codes for data storage systems,” IEEE Trans. Magn., vol. 32, no. 5, pt. 1, pp. 3992-3994, Sept. 1996.
[7] B. E. Moision and P. H. Siegel, “Distance-enhancing codes for digital recording,” IEEE Trans. Magn., vol. 34, no. 1, pp. 69-74, Jan. 1998.
[8] W. G. Bliss, “An 8/9 rate time-varying trellis code for high density magnetic recording,” IEEE Trans. Magn., vol. 33, no. 5, pt. 1, pp. 2746-2748, Sept. 1997.
[9] K. K. Fitzpatrick and C. S. Modlin, “Time-varying MTR codes for high density magnetic recording,” in Proc. 1997 IEEE Global Telecommun. Conf. (GLOBECOM ‘97) (Phoenix, AZ), pp. 1250-1253, Nov. 1997.
[10] K. A. S. Immink, Coding Techniques for Digital Recorders, Prentice Hall, Englewood Cliffs, New Jersy, 1991.
[11] P. M. Aziz, N. Sayiner, and V. Annampedu, “A rate 16/17 punctured MTR block code,” in Proc. ICC’99, Vanccouver, BC, Canada, pp. 1643-1647, June 1999.
[12] A. M. Patel, “Encoder and decoder for a byte-oriented (0, 3) 8/9 code,” IBM Tech. Disl. Bull., vol. 18, pp. 248-251, June 1975.
[13] K. A. S. Immink, Codes for Mass Data Storage Systems. The Netherlands: Shannon Foundation, 1999.
[14] C. Mee and E. Daniel, Magnetic Recording, McGraw-Hill, New York, 1987.
[15] P. Siegel and J. Wolf, “Modulation and coding for information storage,” IEEE Comm. Magazine, vol. 29, pp. 68-86, Dec. 1991.
[16] S. A. Altekar, M. Berggren, B. E. Moision, P. H. Siegel, and J. K. Wolf, “Error-event characterization on partial-response channels,” IEEE Trans. Inform. Theory, vol. 45, pp. 241-247, Jan. 1999.
[17] I. Ozgunes, B. V. K. Vijaya Kumar, and M. Kryder, “Effect of transition noise on the signal-to-noise ratio of magneto-optic read channels,” IEEE Trans. Magn., vol. 32, pp. 3291-3304, Sept. 1996.
[18] P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun., vol. COM-23, pp. 921-934, Sept. 1975.
[19] R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Select. Areas Commun., vol. 10, no. 1, pp. 38-56, Jan. 1992.
[20] R. Karabed and P. H. Siegel, “Matched spectral-null codes for partial response channels,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pp. 818-855, May 1991.
[21] G. Vannucci and G. J. Foschini, “The minimum distance for digital magnetic recording partial responses,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pp. 955-960, May 1991.
[22] C. Berrou, A. Glavieux, and P. Thitimajshim, “Near Shannon limit error-correcting coding and decoding: Turbo-codes” in Proc. ICC’93, Geneva, Switzerland, pp 1064-1070, May 1993.
[23] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization over a frequency selective channel,” in Proc. Intl. Symp. on Turbo codes & Related Topics, Brest, France, pp. 96-102, Sept. 1997.
[24] D. Raphaeli and Y. Zarai, “Combined turbo equalization and turbo decoding,” IEEE Commu. Lett., vol. 2, no. 4, pp. 107-109, April 1998.
[25] L. L. McPheters, S. W. McLaughlin, and E. Hirsch, “Turbo codes for PR4 and EPR4 magnetic recording,” in Proc. of the 1998 Asilomar Conf. on Computers and Commun., Pacific Grove, CA, pp. 1778-1782, Nov. 1998.
[26] W. Ryan, L. L. McPheters, and S. W. McLaughlin, “Combined turbo coding and turbo equalization for PR4-equalized Lorentzian channels,” in Proc. of Conf. Inform. Sci. and Sys., Princeton, NJ, pp. 489-493, March 1998.
[27] L. L. McPheters, K. R. Narayanan, and L. L. McPheters, “Precoded PRML, serial concatenation, and iterative (turbo) decoding,” IEEE Trans. Magn., pp. 2325-2327, Sept. 1999.
[28] T. Souvignier, A. Firedmann, M. Oberg, P. H. Siegel, R. E. Swanson, and J. K. Wolf, “Turbo decoding for PR4: parallel versus serial concatenation,” in Proc. Inter. Conf. on Commun., pp. 1638-1642, June 1999.
[29] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, March 1974.
[30] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” in Proc IEEE Globecom, Dallas, TX, pp. 1680-1686, Nov. 1989.
[31] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 909–926, May 1998.
[32] K. R. Narayanan and G. L. Stüber, “A serial concatenation approach to iterative demodulation and decoding,” IEEE Trans. Commun., vol. 47, pp. 956–961, July 1999.
[33] A. Ghrayeb and W. E. Ryan, “Concatenated code system design for storage channels,” IEEE J. Select. Areas Commun., vol. 19, no. 4, pp. 709–718, April 2001.
[34] H. Song, B. V. K. Vijaya Kumar, E. Kurtas, Y. Yuan, L. L. McPheters, and S. W. McLaughlin, “Iterative decoding for partial response (PR), equalized, magneto-optical (MO) data storage channels,” IEEE J. Select. Areas Commun., vol. 19, no. 4, pp. 774–782, April 2001.
[35] K. D. Anim-Appiah and S. W. McLaughlin, “Turbo codes cascaded with high-rate block codes for (0, k) constrained channels,” IEEE J. Select. Areas Commun., vol. 19, no. 4, pp. 677–685, April 2001.
[36] M. Spurbeck, and R. T. Behrens, “Interpolated timing recovery for hard disk drive read channels,” in Proc. Inter. Conf. Commun., pp.1618-1624, June 1997.
[37] Z. Wu and J. M. Cioffi, “A MMSE interpolated timing recovery scheme for the magnetic recording channel,” in Proc. Inter. Conf. Commun., pp.1625-1629, June 1997.
[38] T. Oenning and J. Moon, “Digital detection with asynchronous sampling using amplitude error prediction,” IEEE Trans. Magn., vol. 34, no. 4, pp. 1931-1933, July 1998.
[39] G. D. Vishakhadatta, et al, “An EPR4 read/write channel with digital timing recovery,” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, pp. 1851-1857, Nov. 1998.
[40] F. M. Gardner, “Interpolation in digital modems – Part I: Fundamentals,” IEEE Trans. Commun., vol.41, no. 3, pp. 501-507, March 1993.
[41] J. Armstrong and D. Strickland, “Symbol synchronization using signal samples and interpolation,” IEEE Trans. Commun., vol. 41, no. 2, pp. 318-321, Feb. 1993.
[42] L. Erup, F. M. Gardner and R. A. Harris, “Interpolation in digital modems – Part II: Implementation and performance,” IEEE Trans. Commun., vol. 41, no. 6, pp. 998-1008, June 1993.
[43] D. Kim, M. J. Narasimha, and D. C. Cox, “Design of Optimal Interpolation Filter for Symbol Timing Recovery,” IEEE Trans. Commun., vol.45, no.7, pp. 877-884, July 1997.
[44] H. Sawaguchi, M. Knodou, N. Kobayahsi and S. Mita, “Concatenated error correction coding for high-order PRML channels,” in Proc. GLOBECOM’ 98, Sydney, pp. 2694-2699, Nov. 1998.
[45] K. H. Mueller and M. Müller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun., vol. 24, no. 5, pp. 516-531, May 1976.
指導教授 林銀議(Yinyi Lin) 審核日期 2006-4-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明