參考文獻 |
1. Brauner, A., et al., Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 2016, 14, 320-330.
2. Shahane, G., et al., Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers. J Membr Biol, 2019, 252, 317-329.
3. Malmsten, M., Antimicrobial peptides. Ups J Med Sci, 2014, 119, 199-204.
4. Lee, J.H., et al., Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides. Phys Rev Lett, 2010, 105, 038101.
5. Makovitzki, A., et al., Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol, 2007, 73, 6629-36.
6. Makovitzki, A., D. Avrahami, and Y. Shai, Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A, 2006, 103, 15997-6002.
7. Greber, K.E., et al., Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Frontiers in microbiology, 2017, 8, 123.
8. 張雯芳, 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性 質的影響, 化學工程與材料工程學系. 國立中央大學, 2015, 151.
90
9. Sikorska, E., et al., Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. Biochim Biophys Acta, 2014, 1838, 2625-34.
10. Manrique-Moreno, M., et al., Interaction of the antimicrobial peptide M3 with the Staphylococcus aureus membrane and molecular models. Biochim Biophys Acta Biomembr, 2021, 1863, 183498.
11. Park, S.-C., et al., Imaging and targeted antibacterial therapy using chimeric antimicrobial peptide micelles. ACS Applied Materials & Interfaces, 2020, 12, 54306-54315.
12. Fujita, Y. and H. Taguchi, Nanoparticle-based peptide vaccines, in Micro and Nanotechnology in Vaccine Development. 2017, Elsevier, 149-170.
13. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002, 66, 236-48.
14. Cutrona, K.J., et al., Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett, 2015, 589, 3915-20.
15. Melo, M.N., R. Ferre, and M.A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 2009, 7, 245-50.
16. Lipscomb, T.H., Towards Finding the Antimicrobial Mechanism of Action of Bombina maxima’s Maximin 3, Using GROMACS. 2015, State University of New York.
91
17. Sezgin, E., et al., The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol, 2017, 18, 361-374.
18. Lanzavecchia, A., Mechanisms of antigen uptake for presentation. Curr Opin Immunol, 1996, 8, 348-54.
19. Stillwell, W., Membrane polar lipids. An Introduction to Biological Membranes. 2nd edition. Elsevier, New York, 2016, 63-87.
20. Epand, R.F., P.B. Savage, and R.M. Epand, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta, 2007, 1768, 2500- 9.
21. Yeagle, P.L., The membranes of cells. 2016, Academic Press.
22. Shearman, G.C., et al., Inverse lyotropic phases of lipids and
membrane curvature. J Phys Condens Matter, 2006, 18, S1105-24.
23. Reeves, D., et al., Membrane mechanics as a probe of ion-channel
gating mechanisms. Physical Review E, 2008, 78, 041901.
24. Sych, T., Y. Mely, and W. Romer, Lipid self-assembly and lectin-
induced reorganization of the plasma membrane. Philos Trans R Soc
Lond B Biol Sci, 2018, 373, 20170117.
25. Richards, D.M. and R.G. Endres, How cells engulf: a review of
theoretical approaches to phagocytosis. Reports on Progress in
Physics, 2017, 80, 126601.
26. Gleichmann, N., Endocytosis and Exocytosis: Differences and
Similarities. 2020.
92
27. Regen, S.L., Membrane-Disrupting Molecules as Therapeutic Agents: A Cautionary Note. JACS Au, 2020, 1, 3-7.
28. Navas, B.P., et al., Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2005, 1716, 40-48.
29. Paar., A., The principles of dynamic light scattering.
30. Brocca, P., et al., Shape fluctuations of large unilamellar lipid
vesicles observed by laser light scattering: influence of the small-
scale structure. Langmuir, 2004, 20, 2141-8.
31. Brocca, P., et al., Thermal fluctuations of small vesicles: observation
by dynamic light scattering. Trends in Colloid and Interface Science
XIV, 2000, 181-185.
32. Blackstone, T., Improving localization confidence in electron beam
induced super-resolution of fluorescent probes in iCLEM.
33. Kamal, M.M., et al., Measurement of the membrane curvature
preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences, 2009, 106, 22245-22250.
34. Londoño, O.M., et al., Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems, in Handbook of materials characterization. 2018, Springer, 37-75.
35. Greenfield, N.J., Applications of circular dichroism in protein and peptide analysis. TrAC Trends in Analytical Chemistry, 1999, 18,
93
236-244.
36. Wei, Y., A.A. Thyparambil, and R.A. Latour, Protein helical structure
determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014, 1844, 2331- 2337.
37. Eid, J., et al., On Calculating the Bending Modulus of Lipid Bilayer Membranes from Buckling Simulations. J Phys Chem B, 2020, 124, 6299-6311.
38. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003, 36, 1378-1388.
39. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000, 62, 4000.
40. Koller, D. and K. Lohner, The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838, 2250-2259.
41. Qiu, W., et al., Ultrafast hydration dynamics in protein conformational transitions. Femtochemistry VII: Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, 2006, 411- 414.
42. Wu, L., et al., Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev, 2020,
94
49, 5110-5139.
43. Elson, E.L., et al., Phase separation in biological membranes:
integration of theory and experiment. Annu Rev Biophys, 2010, 39,
207-26.
44. Burdach, K., et al., Interactions of Linear Analogues of Battacin with
Negatively Charged Lipid Membranes. Membranes (Basel), 2021, 11, 192. |