博碩士論文 109324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.145.83.149
姓名 陳冠倫(Guan-Lun Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 抗菌脂肽與類細菌脂質膜在最低抑制濃度下的相互作用
(Interactions between antimicrobial lipopeptides and bacteria-mimetic lipid membranes across the minimum inhibitory concentrations)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-30以後開放)
摘要(中) 細菌的抗生素耐藥性是對治療的威脅。科學家們希望找到一種替代療法來解決這個問題。抗菌脂肽被認為是替代傳統抗生素的有潛力療法,因為它們對細菌耐藥性的敏感性較低。在最小抑菌濃度抗菌成本較低,我們的實驗選擇最小抑菌濃度來研究抗菌脂肽彈性性質的變化。更具體地說,透過動態光散射儀、螢光光譜儀和小角度 X 光散射實驗,我們研究不同的抗菌脂肽如何改變彈性和結構特性,包括彎曲係數、自發曲率(即彎曲趨勢)和脂質膜的厚度。實驗結果指出在最小抑菌濃度下抗菌脂肽對於單層囊泡的彈性性質,彎曲係數、自發曲率和膜厚無明顯變化,並且彈性自由能也沒有顯著差異。
摘要(英) Antibiotic resistance of bacteria is a threat to treatment. Scientists want to find an alternative therapy to solve this issue. Antimicrobial lipopeptides have been considered as a promising alternative to conventional antibiotics, due to their lower vulnerability to bacterial drug resistance. Our experiment chose the MIC (minimum inhibitory concentration) to investigate the change of elastic properties in antimicrobial lipopeptide for lower cost. More specifically, by dynamic light scattering, fluorescent spectroscopy, and small-angle X-ray scattering, we examine how the different antimicrobial lipopeptides alter the elastic and structural properties, including bending stiffness, spontaneous curvature (i.e., the tendency of curving) and membrane thickness of the membranes. The results of the experiment pointed out that the elastic property bending stiffness, spontaneous curvature and membrane thickness not changed significantly in MIC, and there is no significant difference in the elastic free energy.
關鍵字(中) ★ 抗菌脂肽
★ 最小抑菌濃度
★ 彈性自由能
關鍵字(英) ★ antimicrobial lipopeptides
★ minimum inhibitory concentration
★ elastic free energy
論文目次 摘要……………………………………………………………………….I
Abstract……………………………………………………..……………II
致謝……………………………………………………………………..III
目錄……………………………………………………………………..IV
圖目錄………………………………………………………………...VIII
表目錄………………………………………………………………….XII
第一章 緒論…………………………………………………………......1
1.1抗菌肽(Antimicrobial peptides)…………………………...…3
1.2細胞膜(Plasma membrane)…………………………………...6
1.3磷脂質(Phospholipids)……………………….………...…….7
1.4彈性性質(Elastic properties)………………………………..10
1.4.1自發曲率(Spontaneous curvature)……………...............12
1.4.2彎曲係數(Bending modulus)………………...................14
1.5研究動機………………………………………………………..16
第二章 實驗材料及方法………………………………...…….............17
2.1實驗材料………………………………………………………..17
2.1.1實驗用磷脂質……………………………….......................17
2.1.1.1 磷脂質(Phospholipid)…………………..................17
2.1.1.2螢光磷脂質(Fluorescent phospholipid)………...…19
2.1.2抗菌脂肽(Antimicrobial lipopeptide)……………………20
2.1.3緩衝溶液(Buffer)………………………………………...28
2.1.4其他材料……………………………………….....................29
2.2實驗設備…………………………………………………………30
2.3實驗步驟及原理…………………………………………………31
2.3.1單層囊泡製備………………………………….....................31
2.3.2抗菌脂肽溶液製備…………………………….....................32
2.3.3動態光散射(Dynamic light scattering)…………………..33
2.3.3.1動態光散射原理………………………………………..33
2.3.3.2測量彎曲係數原理……………...……………………...34
2.3.3.3動態光散射儀實驗步驟…………………………..……36
2.3.4螢光光譜儀(Fluorescence spectroscopy)………………..37
2.3.4.1螢光光譜儀原理………………………………………..37
2.3.4.2測量自發曲率原理……………………………………..37
2.3.4.3外層螢光還原實驗步驟………………………………..40
2.3.5小角度X光散射(Small angle X-ray scattering)……......42
2.3.5.1小角度X光散射原理……………………………...…..42
2.3.5.2小角度X光散射實驗步驟…………………….....……43
2.3.6圓二色光譜(Circular dichroism)………………………...44
2.3.6.1圓二色光譜原理…………………………………..……44
2.3.6.2圓二色光譜實驗步驟…………………………………..45
2.4數據處理…………………………………………………………46
2.4.1量化彎曲係數…………………………………….................46
2.4.2量化自發曲率…………………………………….................49
2.4.3單層囊泡膜厚…………………………………….................51
第三章 結果……………………………………………………………54
3.1抗菌脂肽對單層囊泡粒徑大小及分佈的影響…………………54
3.2抗菌脂肽對單層囊泡彎曲係數的影響…………………………57
3.3抗菌脂肽對單層囊泡結構的影響………………………...…….64
3.4抗菌脂肽對單層囊泡膜厚的影響………………………………67
3.5抗菌脂肽對單層囊泡自發曲率的影響…………………………74
3.6抗菌脂肽對單層囊泡二級結構的影響…………………………80
第四章 討論…………………………………………………...……….83
4.1彈性性質及膜厚對抗菌脂肽最小抑菌濃度探討………………83
4.2彈性自由能與抗菌脂肽最小抑菌濃度探討……………………85
4.3最小抑菌濃度造成抗菌的其他方向……………………………87
第五章 結論………………………………………………...….............89
文獻目錄與參考資料…………………………………………………..90
附錄……………………………………………………………………..96
參考文獻 1. Brauner, A., et al., Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 2016, 14, 320-330.
2. Shahane, G., et al., Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers. J Membr Biol, 2019, 252, 317-329.
3. Malmsten, M., Antimicrobial peptides. Ups J Med Sci, 2014, 119, 199-204.
4. Lee, J.H., et al., Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides. Phys Rev Lett, 2010, 105, 038101.
5. Makovitzki, A., et al., Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol, 2007, 73, 6629-36.
6. Makovitzki, A., D. Avrahami, and Y. Shai, Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A, 2006, 103, 15997-6002.
7. Greber, K.E., et al., Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Frontiers in microbiology, 2017, 8, 123.
8. 張雯芳, 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性 質的影響, 化學工程與材料工程學系. 國立中央大學, 2015, 151.
90
9. Sikorska, E., et al., Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. Biochim Biophys Acta, 2014, 1838, 2625-34.
10. Manrique-Moreno, M., et al., Interaction of the antimicrobial peptide M3 with the Staphylococcus aureus membrane and molecular models. Biochim Biophys Acta Biomembr, 2021, 1863, 183498.
11. Park, S.-C., et al., Imaging and targeted antibacterial therapy using chimeric antimicrobial peptide micelles. ACS Applied Materials & Interfaces, 2020, 12, 54306-54315.
12. Fujita, Y. and H. Taguchi, Nanoparticle-based peptide vaccines, in Micro and Nanotechnology in Vaccine Development. 2017, Elsevier, 149-170.
13. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002, 66, 236-48.
14. Cutrona, K.J., et al., Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett, 2015, 589, 3915-20.
15. Melo, M.N., R. Ferre, and M.A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 2009, 7, 245-50.
16. Lipscomb, T.H., Towards Finding the Antimicrobial Mechanism of Action of Bombina maxima’s Maximin 3, Using GROMACS. 2015, State University of New York.
91

17. Sezgin, E., et al., The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol, 2017, 18, 361-374.
18. Lanzavecchia, A., Mechanisms of antigen uptake for presentation. Curr Opin Immunol, 1996, 8, 348-54.
19. Stillwell, W., Membrane polar lipids. An Introduction to Biological Membranes. 2nd edition. Elsevier, New York, 2016, 63-87.
20. Epand, R.F., P.B. Savage, and R.M. Epand, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta, 2007, 1768, 2500- 9.
21. Yeagle, P.L., The membranes of cells. 2016, Academic Press.
22. Shearman, G.C., et al., Inverse lyotropic phases of lipids and
membrane curvature. J Phys Condens Matter, 2006, 18, S1105-24.
23. Reeves, D., et al., Membrane mechanics as a probe of ion-channel
gating mechanisms. Physical Review E, 2008, 78, 041901.
24. Sych, T., Y. Mely, and W. Romer, Lipid self-assembly and lectin-
induced reorganization of the plasma membrane. Philos Trans R Soc
Lond B Biol Sci, 2018, 373, 20170117.
25. Richards, D.M. and R.G. Endres, How cells engulf: a review of
theoretical approaches to phagocytosis. Reports on Progress in
Physics, 2017, 80, 126601.
26. Gleichmann, N., Endocytosis and Exocytosis: Differences and
Similarities. 2020.
92

27. Regen, S.L., Membrane-Disrupting Molecules as Therapeutic Agents: A Cautionary Note. JACS Au, 2020, 1, 3-7.
28. Navas, B.P., et al., Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2005, 1716, 40-48.
29. Paar., A., The principles of dynamic light scattering.
30. Brocca, P., et al., Shape fluctuations of large unilamellar lipid
vesicles observed by laser light scattering: influence of the small-
scale structure. Langmuir, 2004, 20, 2141-8.
31. Brocca, P., et al., Thermal fluctuations of small vesicles: observation
by dynamic light scattering. Trends in Colloid and Interface Science
XIV, 2000, 181-185.
32. Blackstone, T., Improving localization confidence in electron beam
induced super-resolution of fluorescent probes in iCLEM.
33. Kamal, M.M., et al., Measurement of the membrane curvature
preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences, 2009, 106, 22245-22250.
34. Londoño, O.M., et al., Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems, in Handbook of materials characterization. 2018, Springer, 37-75.
35. Greenfield, N.J., Applications of circular dichroism in protein and peptide analysis. TrAC Trends in Analytical Chemistry, 1999, 18,
93

236-244.
36. Wei, Y., A.A. Thyparambil, and R.A. Latour, Protein helical structure
determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014, 1844, 2331- 2337.
37. Eid, J., et al., On Calculating the Bending Modulus of Lipid Bilayer Membranes from Buckling Simulations. J Phys Chem B, 2020, 124, 6299-6311.
38. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003, 36, 1378-1388.
39. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000, 62, 4000.
40. Koller, D. and K. Lohner, The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838, 2250-2259.
41. Qiu, W., et al., Ultrafast hydration dynamics in protein conformational transitions. Femtochemistry VII: Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, 2006, 411- 414.
42. Wu, L., et al., Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev, 2020,
94

49, 5110-5139.
43. Elson, E.L., et al., Phase separation in biological membranes:
integration of theory and experiment. Annu Rev Biophys, 2010, 39,
207-26.
44. Burdach, K., et al., Interactions of Linear Analogues of Battacin with
Negatively Charged Lipid Membranes. Membranes (Basel), 2021, 11, 192.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明