博碩士論文 109324016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.217.26.8
姓名 王辰浩(Chen-Hao Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 濕式法製備可撓曲銀/矽晶異質微奈米結構陣列及其自驅動光感測特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們提出了一種聚苯乙烯奈米球微影術結合鹼性溶液化學蝕刻與兩步驟金屬催化無電鍍蝕刻法之製程技術,成功地在(001)矽單晶基材上製備準直之一維矽單晶奈米線/錐狀雙尺度異質陣列結構,同時進一步製備雙面粗糙化表面,並保留原先蝕刻奈米線之底部銀金屬顆粒,由光學性質量測結果顯示其在可見光至近紅外光波段(400-1600 nm),展現出良好的寬波段光吸收特性。隨後以新穎無電鍍沉積銀奈米粒子之技術開發銀/矽蕭基接面元件,並藉由TEM影像及其對應之選區電子繞射圖譜分析結構形貌及成份鑑定,最後使用940 nm近紅外光光源照射,於零偏壓下量測其光響應度、偵測靈敏度及響應速度,並掌握元件最佳性能之製程參數,直接整合於超薄可撓曲矽單晶基材上。
套用上述之製程技術,我們成功製備出超薄可撓曲銀/矽蕭基接面光感測元件,能夠在嚴酷的彎曲條件下進行光偵測,並承受多達1000次的反覆彎曲,展現出優異的穩定性及元件可靠度,同時對於940 nm之近紅外光光源,達到139 mA/W之光響應度及快速的響應時間(τ_r= 80 μs /τ_f= 412 μs)。本研究成功開發一連串簡單快速且低成本之濕式法,能夠應用於製備各式自驅動、高光響應及優異穩定性之可撓曲薄型光感測元件,是近幾年文獻中較少被提及的。
摘要(英) In this study, we proposed a approach based on the nanosphere lithography, alkaline solution chemical etching and two-step metal-catalyzed electroless etching to successfully fabricate vertically-aligned single crystalline silicon nanowires (SiNWs)/ Si pyramid nanostructure arrays on (001) silicon substrate. In addition to producing double-sided pyramid-textured surface, we remained the silver nanoparticles at the bottom of SiNWs after two-step etching processes. Through UV-Vis-NIR measurements can show that the double-sided structure exhibited high broadband absorption from visible to near-infrared (NIR) light range. Subsequently, we developed Ag / Si Schottky junction nanodevices by electroless deposition process and observed their morphologies by TEM and SAED analyses. The produced Ag / Si Schottky junction NIR photodetectors were able to operate at zero external bias voltage and exhibited high responsivity, sensitivity and rapid response time to 940 nm NIR light.
By combining with ultra-thin Si substrate which possessed excellent bending ability, the flexible Ag / Si Schottky junction NIR photodetectors were prepared. They not only can be applied to achieve detection of NIR light on larger curvature surface but also can endure the bending cycles up to 1000 times. Besides, the flexible Ag / Si Schottky junction NIR photodetectors can exhibit a peak responsivity of 139 mA/W and fast response speed (τ_r= 80 μs /τ_f= 412 μs) to 940 nm NIR light. In this study, we proposed a series of facile and low-cost solution-based approachs to fabricate various self-powered, high responsivity, and excellent stability flexible Si-based optoelectronic nanodevices, which is less mentioned in the literature recently.
關鍵字(中) ★ 近紅外光偵測元件
★ 可撓曲
★ 異質微奈米結構
★ 自驅動感測特性
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽單晶表面粗糙化結構之製備及應用 3
1-3 一維矽單晶奈米線之製備及應用 4
1-4 金屬奈米材料之特性探討 5
1-5 光感測元件 6
1-5-1 金屬與半導體之接觸理論 6
1-5-2 蕭基接面之光感測機制 8
1-6 紅外線光感測器 9
1-7 超薄型可撓曲式之矽晶感測元件 10
1-7-1 超薄型可撓曲元件之應用 10
1-7-2 超薄型可撓曲矽晶元件之製程 11
1-8 研究動機及目標 12
第二章 實驗步驟及儀器設備 13
2-1 實驗步驟 13
2-1-1 矽單晶基材使用前處理 13
2-1-2超薄可撓曲矽晶基材之製備 14
2-1-3 單層自組裝奈米球陣列模板之製備 14
2-1-4 矽單晶基材表面粗糙化結構 14
2-1-5 兩步驟金屬催化無電鍍蝕刻法製備微奈米異質陣列結構 15
2-1-6 低溫無電鍍沉積銀金屬奈米粒子 15
2-1-7 濺鍍鋁金屬薄膜 15
2-1-8 光感測元件之製備 16
2-2 試片分析 16
2-2-1 掃描式電子顯微鏡 16
2-2-2 穿透式電子顯微鏡 17
2-2-3 可見光-近紅外光光譜儀 17
2-2-4 影像式水滴接觸角量測儀 18
2-2-5 近紅外光偵測系統 18
第三章 結果與討論 19
3-1 大面積規則有序之矽單晶金字塔陣列結構 19
3-1-1 單層自組裝奈米球陣列模板製備 19
3-1-2 奈米球微影術結合鹼性蝕刻法製備矽單晶微米金字塔陣列結構 20
3-2 大面積隨機排列之矽單晶金字塔陣列結構 20
3-3 大面積之一維矽晶微奈米異質陣列結構 21
3-3-1一維矽晶奈米線/錐狀微奈米陣列結構之製備 21
3-3-2一維矽晶奈米線/雙面錐狀微奈米陣列結構之製備 22
3-3-3 可見光-近紅外光積分球光譜儀分析 23
3-4 矽晶近紅外光偵測元件 24
3-4-1 銀/矽晶微奈米異質結構之蕭基接面製備 24
3-4-2 銀/矽晶微奈米異質結構蕭基接面之近紅外光感測特性分析與探討 26
3-4-3 銀/雙面矽晶微奈米異質結構蕭基接面之近紅外光感測特性分析與探討 27
3-5 超薄可撓曲之矽晶近紅外光偵測元件 29
3-5-1 超薄可撓曲矽單晶基材之製備 29
3-5-2 超薄矽晶基材上製備一維矽晶奈米線/單面及雙面錐狀微奈米異質結構 30
3-5-3 可見光-近紅外光積分球光譜儀分析 31
3-5-4 超薄可撓曲銀/單面及雙面矽晶微奈米結構蕭基接面近紅外光感測特性分析探討 33
3-5-5 超薄可撓曲矽晶近紅外光偵測元件之彎曲性能分析與探討 33
3-6 矽晶近紅外光偵測元件之靈敏度、響應度以及響應時間 34
第四章 結論與未來展望 37
參考文獻 38
表目錄 47
圖目錄 49
參考文獻 [1] J. Gao, K. Shang, Y. Ding, and Z. Wen, "Material and configuration design strategies towards flexible and wearable power supply devices: a review," Journal of Materials Chemistry A, 9 (2021) 8950.
[2] C. Convertino, C.B. Zota, H. Schmid, D. Caimi, L. Czornomaz, A.M. Ionescu, and K.E. Moselund, "A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon," Nature Electronics, 4 (2021) 162.
[3] M. Karbalaei, D. Dideban, and H. Heidari, "A sectorial scheme of gate-all-around field effect transistor with improved electrical characteristics," Ain Shams Engineering Journal, 12 (2021) 755.
[4] L. Zhang, T. Song, L. Shi, N. Wen, Z. Wu, C. Sun, D. Jiang, and Z. Guo, "Recent progress for silver nanowires conducting film for flexible electronics," Journal of Nanostructure in Chemistry, 11 (2021) 323.
[5] Q. Liu, Y. Song, P. Zeng, C. Zhang, Y. Chen, H. Wang, Y. Luo, and H. Duan, "High-fidelity fabrication of plasmonic nanoholes array via ion-beam planarization for extraordinary transmission applications," Applied Surface Science, 526 (2020) 146690.
[6] K. Arifin, R.M. Yunus, L.J. Minggu, and M.B. Kassim, "Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review," International Journal of Hydrogen Energy, 46 (2021) 4998.
[7] B. Pal, K.J. Sarkar, and P. Banerji, "Fabrication and studies on Si/InP core-shell nanowire based solar cell using etched Si nanowire arrays," Solar Energy Materials and Solar Cells, 204 (2020) 110217.
[8] A. Khaled, M.F.O. Hameed, B.M.A. Rahman, K.T.V. Grattan, S.S.A. Obayya, and M. Hussein, "Characteristics of silicon nanowire solar cells with a crescent nanohole," Optics Express, 28 (2020) 31020.
[9] H. Fu, H. Bao, H. Zhang, Q. Zhao, L. Zhou, S. Zhu, Y. Wei, Y. Li, and W. Cai, "Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays," ACS Omega, 6 (2021) 18928.
[10] A. Ouhibi, A. Raouafi, N. Lorrain, M. Guendouz, N. Raouafi, and A. Moadhen, "Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen," Sensors and Actuators B: Chemical, 330 (2021) 129352.
[11] S. Elyamny, E. Dimaggio, S. Magagna, D. Narducci, and G. Pennelli, "High Power Thermoelectric Generator Based on Vertical Silicon Nanowires," Nano Letters, 20 (2020) 4748.
[12] G. Gadea Díez, J.M. Sojo Gordillo, M. Pacios Pujadó, M. Salleras, L. Fonseca, A. Morata, and A. Tarancón Rubio, "Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances," Nano Energy, 67 (2020) 104191.
[13] S. Arshavsky-Graham, K. Urmann, R. Salama, N. Massad-Ivanir, J.G. Walter, T. Scheper, and E. Segal, "Aptamers vs. antibodies as capture probes in optical porous silicon biosensors," Analyst, 145 (2020) 4991.
[14] N.H. Maniya and D.N. Srivastava, "Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection," Materials Science in Semiconductor Processing, 115 (2020) 105126.
[15] Y. Cai, S. Shen, C. Zhu, X. Zhao, J. Bai, and T. Wang, "Nonpolar (1120) GaN Metal-Semiconductor-Metal Photodetectors with Superior Performance on Silicon," ACS Applied Materials & Interfaces, 12 (2020) 25031.
[16] A.M. Al-Husseini and B. Lahlouh, "Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant," Bulletin of Materials Science, 42 (2019) 1.
[17] A.A. Fashina, K.K. Adama, O.K. Oyewole, V.C. Anye, J. Asare, M.G. Zebaze Kana, and W.O. Soboyejo, "Surface texture and optical properties of crystalline silicon substrates," Journal of Renewable and Sustainable Energy, 7 (2015) 063119.
[18] D. Wu, C. Guo, Z. Wang, X. Ren, Y. Tian, Z. Shi, P. Lin, Y. Tian, Y. Chen, and X. Li, "A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect," Nanoscale, 13 (2021) 13550.
[19] Y. Zhai, Y. Li, J. Ji, Z. Wu, and Q. Wang, "Hot Electron Generation in Silicon Micropyramids Covered with Nanometer-Thick Gold Films for Near-Infrared Photodetectors," ACS Applied Nano Materials, 3 (2020) 149.
[20] F. Qiao, Q. Liang, Y. Jiang, H. Chu, Z. Chen, and D. Jin, "Fabrication of multi-crystalline silicon pyramid structure and improvement in its photovoltaic performance," Journal of Materials Science, 55 (2019) 680.
[21] N. Zin, K. McIntosh, T. Kho, E. Franklin, K. Fong, M. Stocks, E.-C. Wang, T. Ratcliff, and A. Blakers. "Rounded rear pyramidal texture for high efficiency silicon solar cells," 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), (2016) 2548 .
[22] N. Zin, K. McIntosh, S. Bakhshi, A. Vázquez-Guardado, T. Kho, K. Fong, M. Stocks, E. Franklin, and A. Blakers, "Polyimide for silicon solar cells with double-sided textured pyramids," Solar Energy Materials and Solar Cells, 183 (2018) 200.
[23] S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, "Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells," Nanoscale Research Letters, 11 (2016) 194.
[24] E. Yablonovitch, "Statistical ray optics," Journal of the Optical Society of America , 72 (1982) 899.
[25] L. Guan, G. Shen, Y. Liang, F. Tan, X. Xu, X. Tan, and X. Li, "Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells," Optics & Laser Technology, 120 (2019) 105700.
[26] S. Misra, L. Yu, W. Chen, M. Foldyna, and P.R.i. Cabarrocas, "A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells," Journal of Physics D: Applied Physics, 47 (2014) 393001.
[27] L.W. Chou, N. Shin, S.V. Sivaram, and M.A. Filler, "Tunable mid-infrared localized surface plasmon resonances in silicon nanowires," JACS, 134 (2012) 16155.
[28] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, and T.Y. Tan, "Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy," Applied Physics Letters, 84 (2004) 4968.
[29] T. David, L. Roussel, T. Neisius, M. Cabie, M. Gailhanou, and C. Alfonso, "Gold coverage and faceting of MBE grown silicon nanowires," Journal of Crystal Growth, 383 (2013) 151.
[30] Z. Zhang, R. Zou, L. Yu, and J. Hu, "Recent research on one-dimensional silicon-based semiconductor nanomaterials: synthesis, structures, properties and applications," Critical Reviews in Solid State and Materials Sciences, 36 (2011) 148.
[31] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof, and R. Hajian, "The Development of Silicon Nanowire as Sensing Material and Its Applications," Journal of Nanomaterials, 2013 (2013) 1.
[32] M. Naffeti, P.A. Postigo, R. Chtourou, and M.A. Zaibi, "Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires," Nanomaterials (Basel), 10 (2020) 404.
[33] R.P. Srivastava and D.Y. Khang, "Structuring of Si into Multiple Scales by Metal-Assisted Chemical Etching," Advanced Materials, 33 (2021) 2005932.
[34] L. Rahmasari, M.F. Abdullah, A.R. Md Zain, and A.M. Hashim, "Silicon Nanohole Arrays Fabricated by Electron Beam Lithography and Reactive Ion Etching," Sains Malaysiana, 48 (2019) 1157.
[35] X. Kaichen, Z. Chentao, L.T. Hsiao, W. Puqun, Z. Rui, J. Rong, and H. Minghui, "Hybrid metal‐insulator‐metal structures on Si nanowires array for surface enhanced Raman scattering," Opto-Electronic Engineering, 44 (2017) 185.
[36] B.J. Lin, "Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost," Microelectronic Engineering, 143 (2015) 91.
[37] J.F. Masson, "Portable and field-deployed surface plasmon resonance and plasmonic sensors," Analyst, 145 (2020) 3776.
[38] V. Yesudasu, H.S. Pradhan, and R.J. Pandya, "Recent progress in surface plasmon resonance based sensors: A comprehensive review," Heliyon, 7 (2021) e06321.
[39] M. Azharuddin, G.H. Zhu, D. Das, E. Ozgur, L. Uzun, A.P.F. Turner, and H.K. Patra, "A repertoire of biomedical applications of noble metal nanoparticles," Chemical Communications (Camb), 55 (2019) 6964.
[40] S.A. Bansal, V. Kumar, J. Karimi, A.P. Singh, and S. Kumar, "Role of gold nanoparticles in advanced biomedical applications," Nanoscale Advances, 2 (2020) 3764.
[41] A. Ronavari, N. Igaz, D.I. Adamecz, B. Szerencses, C. Molnar, Z. Konya, I. Pfeiffer, and M. Kiricsi, "Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications," Molecules, 26 (2021) 844.
[42] Q.K. Doan, M.H. Nguyen, C.D. Sai, V.T. Pham, H.H. Mai, N.H. Pham, T.C. Bach, V.T. Nguyen, T.T. Nguyen, K.H. Ho, and T.H. Tran, "Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self cleaning surface enhanced Raman applications," Applied Surface Science, 505 (2020) 144593.
[43] A.-H. Chiou, J.-L. Wei, and S.-H. Chen, "Ag-Functionalized Si Nanowire Arrays Aligned Vertically for SERS Detection of Captured Heavy Metal Ions by BSA," Coatings, 11 (2021) 685.
[44] Y. Ma, Y. Du, Y. Chen, C. Gu, T. Jiang, G. Wei, and J. Zhou, "Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires," Chemical Engineering Journal, 381 (2020) 122710.
[45] X. Dong, C. Xu, C. Yang, F. Chen, A.G. Manohari, Z. Zhu, W. Zhang, R. Wang, D. You, and J. Chen, "Photoelectrochemical response to glutathione in Au-decorated ZnO nanorod array," Journal of Materials Chemistry C, 7 (2019) 5624.
[46] D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong, Y. Sohn, J.R. Jeong, and E.T. Kim, "Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting," Nanomicro Letters, 12 (2020) 172.
[47] F.S. Lim, S.T. Tan, Y. Zhu, J.-W. Chen, B. Wu, H. Yu, J.-M. Kim, R.T. Ginting, K.S. Lau, C.H. Chia, H. Wu, M. Gu, and W.S. Chang, "Tunable Plasmon-Induced Charge Transport and Photon Absorption of Bimetallic Au–Ag Nanoparticles on ZnO Photoanode for Photoelectrochemical Enhancement under Visible Light," The Journal of Physical Chemistry C, 124 (2020) 14105.
[48] D. Lin, Z. Wu, S. Li, W. Zhao, C. Ma, J. Wang, Z. Jiang, Z. Zhong, Y. Zheng, and X. Yang, "Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy," ACS Nano, 11 (2017) 1478.
[49] L. Wei, J. Lin, S. Xie, W. Ma, Q. Zhang, Z. Shen, and Y. Wang, "Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays," Nanoscale, 11 (2019) 12530.
[50] K. Ramachandran, S. Columbus, S. Chidambaram, K. Daoudi, M.A. El Khakani, and M. Gaidi, "Fabrication of highly oriented 1D SiNW arrays/Au for femto molar level detection of H1N1 protein," Materials Letters, 300 (2021) 130184.
[51] M. Naffeti, P.A. Postigo, R. Chtourou, and M.A. Zaibi, "Highly Efficient Silicon Nanowire Surface Passivation by Bismuth Nano-Coating for Multifunctional Bi@SiNWs Heterostructures," Nanomaterials (Basel), 10 (2020) 1434.
[52] V. Mohacek-Grosev, H. Gebavi, A. Bonifacio, V. Sergo, M. Dakovic, and D. Bajuk-Bogdanovic, "Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering," Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 200 (2018) 102.
[53] L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, S. Mohajerzadeh, and M. Fathipour, "Optical and Surface Enhanced Raman Scattering properties of Ag modified silicon double nanocone array," Scientific Reports, 7 (2017) 12106.
[54] P.S. Priambodo, N.R. Poespawati, and D. Hartanto, "Solar cell," Chapters (2011).
[55] T. Kan, Y. Ajiki, K. Matsumoto, and I. Shimoyama, "Si process compatible near-infrared photodetector using Au/Si nano-pillar array," 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016) 624.
[56] Q. Wu, G. Cen, Y. Liu, Z. Ji, and W. Mai, "A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging," Physics Letters A, 412 (2021) 127586.
[57] M. Fidan, Ö. Ünverdi, and C. Çelebi, "Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes," Sensors and Actuators A: Physical, 331 (2021) 112829.
[58] Y. Guan, G. Cao, and X. Li, "Single-nanowire silicon photodetectors with core-shell radial Schottky junction for self-powering application," Applied Physics Letters, 118 (2021) 153904.
[59] C. Wang, Y. Dong, Z. Lu, S. Chen, K. Xu, Y. Ma, G. Xu, X. Zhao, and Y. Yu, "High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction," Sensors and Actuators A: Physical, 291 (2019) 87.
[60] Y. Ma, Y. Chang, B. Dong, J. Wei, W. Liu, and C. Lee, "Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing," ACS Nano, 15 (2021) 10084.
[61] W. Chen, Z. Deng, D. Guo, Y. Chen, Y.I. Mazur, Y. Maidaniuk, M. Benamara, G.J. Salamo, H. Liu, J. Wu, and B. Chen, "Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate," Journal of Lightwave Technology, 36 (2018) 2572.
[62] E. Delli, V. Letka, P.D. Hodgson, E. Repiso, J.P. Hayton, A.P. Craig, Q. Lu, R. Beanland, A. Krier, A.R.J. Marshall, and P.J. Carrington, "Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Silicon," ACS Photonics, 6 (2019) 538.
[63] Z. Wang, X. Zhang, D. Wu, J. Guo, Z. Zhao, Z. Shi, Y. Tian, X. Huang, and X. Li, "Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications," Journal of Materials Chemistry C, 8 (2020) 6877.
[64] Y. Xu, Y. Ma, Y. Yu, S. Chen, Y. Chang, X. Chen, and G. Xu, "Self-powered, ultra-high detectivity and high-speed near-infrared photodetectors from stacked-layered MoSe2/Si heterojunction," Nanotechnology, 32 (2021) 075201.
[65] M. Bednorz, G.J. Matt, E.D. Glowacki, T. Fromherz, C.J. Brabec, M.C. Scharber, H. Sitter, and N.S. Sariciftci, "Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime," Organic Electronics, 14 (2013) 1344.
[66] V. Đerek, E.D. Głowacki, M. Sytnyk, W. Heiss, M. Marciuš, M. Ristić, M. Ivanda, and N.S. Sariciftci, "Enhanced near-infrared response of nano- and microstructured silicon/organic hybrid photodetectors," Applied Physics Letters, 107 (2015) 083302.
[67] X. Jin, Y. Sun, Q. Wu, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu, "High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon," ACS Applied Materials & Interfaces, 11 (2019) 42385.
[68] S.Q. Lim, C.T.K. Lew, P.K. Chow, J.M. Warrender, J.S. Williams, and B.C. Johnson, "Toward understanding and optimizing Au-hyperdoped Si infrared photodetectors," APL Materials, 8 (2020) 061109.
[69] Z. Zhang, T. Martinsen, G. Liu, M. Tayyib, D. Cui, M.J. Boer, F. Karlsen, H. Jakobsen, C. Xue, and K. Wang, "Ultralow Broadband Reflectivity in Black Silicon via Synergy between Hierarchical Texture and Specific‐Size Au Nanoparticles," Advanced Optical Materials, 8 (2020) 2000668.
[70] M.A. Nazirzadeh, F.B. Atar, B.B. Turgut, and A.K. Okyay, "Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection," Scientific Reports, 4 (2014) 7103.
[71] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, and Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection," Nanotechnology, 28 (2017) 275202.
[72] N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, and J. Song, "Performance of OLED under mechanical strain: a review," Journal of Materials Science: Materials in Electronics, 31 (2020) 20688.
[73] N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, "Emerging flexible sensors based on nanomaterials: recent status and applications," Journal of Materials Chemistry A, 8 (2020) 25499.
[74] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, L. Flueratoru, D.Q. Gaibor, N. Chukhno, O. Chukhno, A. Ali, A. Channa, E. Svertoka, W.B. Qaim, R. Casanova-Marqués, S. Holcer, J. Torres-Sospedra, S. Casteleyn, G. Ruggeri, G. Araniti, R. Burget, J. Hosek, and E.S. Lohan, "A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges," Computer Networks, 193 (2021) 108074.
[75] J.M. Choi, H.Y. Jang, A.R. Kim, J.D. Kwon, B. Cho, M.H. Park, and Y. Kim, "Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis," Nanoscale, 13 (2021) 672.
[76] P.J. Chien, Y. Zhou, K.H. Tsai, H.P. Duong, and C.Y. Chen, "Self-formed silver nanoparticles on freestanding silicon nanowire arrays featuring SERS performances," RSC Advances, 9 (2019) 26037.
[77] S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang, J. Jie, and X. Zhang, "Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins," Nano Letters, 20 (2020) 2478.
[78] E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, and H.E. Unalan, "Silicon nanowire network metal-semiconductor-metal photodetectors," Applied Physics Letters, 103 (2013) 083114.
[79] M.K. Sahoo and P. Kale, "Transfer of vertically aligned silicon nanowires array using sacrificial porous silicon layer," Thin Solid Films, 698 (2020) 137866.
[80] L. Wu, S. Li, W. He, D. Teng, K. Wang, and C. Ye, "Automatic release of silicon nanowire arrays with a high integrity for flexible electronic devices," Scientific Reports, 4 (2014) 3940.
[81] G. Farid, Y. Yang, A. Mateen, C. Huo, H. Wang, and K.-Q. Peng, "Rapid Formation of Uniform Cracks in Metal-Assisted Etched Silicon Nanowire Array Membranes: Implications for Transfer of Nanowires and Flexible Devices," ACS Applied Nano Materials, 5 (2022) 2779.
[82] X. Xue, S. Yang, and Z. Wang, "Heat-Depolymerizable Polypropylene Carbonate as a Temporary Bonding Adhesive for Fabrication of Flexible Silicon Sensor Chips," IEEE Transactions on Components, Packaging and Manufacturing Technology, 7 (2017) 1751.
[83] C. Landesberger, C. Paschke, and K. Bock, "Influence of Wafer Grinding and Etching Techniques on the Fracture Strength of Thin Silicon Substrates," Advanced Materials Research, 325 (2011) 659.
[84] K.Y. Byun, I. Ferain, S. Song, S. Holl, and C. Colinge, "Single-Crystalline Silicon Layer Transfer to a Flexible Substrate Using Wafer Bonding," Journal of Electronic Materials, 39 (2010) 2233.
[85] N. Watanabe, T. Miyazaki, M. Aoyagi, and K. Yoshikawa, "Silicon wafer thinning and backside via exposure by wet etching," 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC), (2012) 355.
[86] C. Sheng, R. Aarif, E. Ali, and M.F. Hassan, "Influence of HF etching time and concentration on Si wafer in the mixture solution of HF/HNO3/CH3COOH," Journal of Sustainability Science and Management, 15 (2020) 6.
[87] C. Li, Z. He, Q. Wang, J. Liu, S. Li, X. Chen, W. Ma, and Y. Chang, "Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching," Silicon, 14 (2021) 2299.
[88] S. Wang, B.D. Weil, Y. Li, K.X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials," Nano Letters, 13 (2013) 4393.
[89] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Applied Surface Science, 273 (2013) 107.
[90] J. Yang, H. Shen, Y. Jiang, and L. Sun, "Controllable fabrication and mechanism study of textured ultra-thin silicon wafers via one-step Cu-assisted chemical etching," Materials Science in Semiconductor Processing, 100 (2019) 79.
[91] A.A.A. Omer, Z. He, S. Hong, Y. Chang, J. Yu, S. Li, W. Ma, W. Liu, W. El Kolaly, and R. Chen, "Ultra-Thin Silicon Wafers Fabrication and Inverted Pyramid Texturing Based on Cu-Catalyzed Chemical Etching," Silicon, 13 (2020) 351.
[92] X. Wang, Z. Yang, P. Gao, X. Yang, S. Zhou, D. Wang, M. Liao, P. Liu, Z. Liu, and S. Wu, "Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays," Optics Express, 25 (2017) 10464.
[93] G. Chatzigiannakis, A. Jaros, R. Leturcq, J.r. Jungclaus, T. Voss, S. Gardelis, and M. Kandyla, "Laser-microstructured ZnO/p-Si photodetector with enhanced and broadband responsivity across the ultraviolet–visible–near-infrared range," ACS Applied Electronic Materials, 2 (2020) 2819.
[94] H.-J. Syu, Y.-C. Huang, Z.-C. Su, R.-L. Sun, and C.-F. Lin, "An Alternative to Compound Semiconductors Using a Si-Based IR Detector," IEEE Transactions on Electron Devices, 69 (2021) 205.
[95] C.-Y. Wu, Z.-Q. Pan, Y.-Y. Wang, C.-W. Ge, Y.-Q. Yu, J.-Y. Xu, L. Wang, and L.-B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector," Journal of Materials Chemistry C, 4 (2016) 10804.
[96] L. Wang, S.-J. He, K.-Y. Wang, H.-H. Luo, J.-G. Hu, Y.-Q. Yu, C. Xie, C.-Y. Wu, and L.-B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector," Nanotechnology, 29 (2018) 505203.
[97] J.-Q. Liu, Y. Gao, G.-A. Wu, X.-W. Tong, C. Xie, L.-B. Luo, L. Liang, and Y.-C. Wu, "Silicon/perovskite core–shell heterojunctions with light-trapping effect for sensitive self-driven near-infrared photodetectors," ACS applied materials & interfaces, 10 (2018) 27850.
[98] Y. Liu, G. Cen, G. Wang, J. Huang, S. Zhou, J. Zheng, Y. Fu, C. Zhao, and W. Mai, "High performance MoO 3− x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application," Journal of Materials Chemistry C, 7 (2019) 917.
[99] Y. Wang, Y. Zhu, H. Gu, and X. Wang, "Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near–Infrared Photodetectors via the Plasmonic Effect," ACS Applied Materials & Interfaces, 13 (2021) 57750.
[100] S. Chaoudhary, A. Dewasi, V. Rastogi, R.N. Pereira, A. Sinopoli, B. Aïssa, and A. Mitra, "Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV–Visible–NIR photodetection," Nanotechnology, 33 (2022) 255202.
[101] A.A. Ahmed, T.F. Qahtan, M. Hashim, A.T. Nomaan, N.H. Al-Hardan, and M. Rashid, "Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect," Ceramics International, 48 (2022) 16142.
[102] X. Zhang, J. Shao, Y. Su, L. Wang, Y. Wang, X. Wang, and D. Wu, "In-situ prepared WSe2/Si 2D-3D vertical heterojunction for high performance self-driven photodetector," Ceramics International, 48 (2022) 29722.
[103] M. Hossain, G.S. Kumar, S. Barimar Prabhava, E.D. Sheerin, D. McCloskey, S. Acharya, K. Rao, and J.J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications," ACS nano, 12 (2018) 4727.
[104] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu, and Z.L. Wang, "Self‐powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro‐phototronic effect: an approach for photosensing below bandgap energy," Advanced Materials, 30 (2018) 1705893.
[105] W.-H. Yang, X.-Y. Jiang, Y.-T. Xiao, C. Fu, J.-K. Wan, X. Yin, X.-W. Tong, D. Wu, L.-M. Chen, and L.-B. Luo, "Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe 2/thin Si Schottky junctions," Materials Horizons, 8 (2021) 1976.
[106] Y. Xu, H. Shen, Y. Li, Z. Yue, W. Zhang, Q. Zhao, and Z. Wang, "Self-Powered and Fast Response MoO3/n-Si Photodetectors on Flexible Silicon Substrates with Light-Trapping Structures," ACS Applied Electronic Materials (2022) DOI: 10.1021/acsaelm.2c00875.
指導教授 鄭紹良 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明