博碩士論文 110821019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.116.15.3
姓名 徐偉倫(Wei-Lun Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 左旋硒代胱胺酸抑制Nrf2與細胞自噬訊息途徑導致Nrf2成癮的結直腸癌細胞死亡
(L-Selenocystine inhibit Nrf2 and autophagy pathway leading to cell death in Nrf2-addicted colorectal cancer cells)
相關論文
★ 雙酚混合物對斑馬魚胚胎心跳減緩的影響:鈣離子幫浦與鈣離子通道的參與★ 研究PM2.5引起腸道細胞不良反應的相關機制:氧化壓力調控引起發炎反應、細胞增生以及細胞自噬的產生
★ 環狀BMP-2肽對肌原細胞中BMP-2蛋白信號的上調★ PM2.5 暴露對人類結腸腺癌 Caco-2 細胞的不良影響 -氧化壓力、發炎、細胞增殖及自噬損傷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-11以後開放)
摘要(中) 結直腸癌為全世界目前好發率高的癌症之一,治療方法通常以手術、化學治療和放射線治療為主,但對後期轉移的病人通常效果不佳,因此臨床上需要及時開發其他有效的新型抗癌藥物進行治療。Nuclear factor erythroid 2–related factor 2 (Nrf2)可以調控癌細胞氧化壓力平衡與物質代謝。研究顯示癌細胞有Nrf2高度活化的現象,在生存和增生對 Nrf2 有高度依賴性,稱為 Nrf2 成癮。而具有Nrf2成癮特徵的癌細胞容易發展出抗藥性,造成癌症化療效果不佳且容易復發,因此針對Nrf2的抗癌藥物極有機會能有效抑制Nrf2 成癮癌細胞的生長。在本篇研究中,我們主要探討左旋硒代胱胺酸 (L-selenocystine, SeC) 對Nrf2成癮大腸癌細胞的抗癌作用。我們比較人類間質幹細胞 (Mesenchymal stem cell, MSC) 與結直腸癌細胞 (WiDr 和 C2BBe1)中其Nrf2與Nrf2相關蛋白質表現量,WiDr細胞具有Nrf2成癮的特徵,MSC細胞為非Nrf2成癮的細胞,而C2BBe1細胞則介於兩者之間,而SeC對WiDr細胞具有較高的細胞毒性與氧化壓力,但對MSC細胞則無明顯的細胞死亡。SeC會減少WiDr細胞的Nrf2/Keap1/p62訊號途徑相關蛋白質表現,而SeC則可正常活化MSC細胞的Nrf2與其下游反應。SeC誘導WiDr細胞中細胞質與粒線體的超氧陰離子產生,但在C2BBe1細胞的超氧陰離子並無明顯增加。抗氧化劑能有效恢復SeC造成的細胞死亡並抑制氧化壓力生成,同時能回復Nrf2/Keap1/p62訊號途徑受SeC的抑制。同時我們也發現WiDr細胞之細胞自噬相關蛋白質在SeC處理後表現量也明顯下降,相反地,SeC可活化MSC細胞之細胞自噬途徑。因此,我們利用細胞自噬抑制劑與SeC共同處裡WiDr細胞釐清細胞自噬的角色,結果顯示抑制細胞自噬會加劇SeC引起的細胞死亡,而抗氧化劑則能夠部分回復WiDr細胞自噬相關蛋白質受SeC影響之表現量。而而C2BBe1細胞的Nrf2蛋白質表現量比WiDr細胞相較低,受SeC影響也比WiDr細胞緩慢,Nrf2/Keap1/p62訊號途徑與細胞自噬途徑需要較長的時間反應才有明顯抑制。我們利用siRNA減少C2BBe1細胞的Keap1表現以提高其Nrf2的活性,模擬類似Nrf2成癮的狀態,結果顯示減少Keap1表現的細胞對SeC的敏感性增加,細胞毒性與氧化壓力產生均有顯著提高。相反地,利用siRNA減少WiDr細胞的Nrf2蛋白質表現,發現處裡SeC的細胞存活率有回復的趨勢。總結來說,SeC能有效抑制Nrf2成癮細胞的Nrf2/Keap1/p62訊號途徑與細胞自噬的形成,並產生大量的氧化壓力分子,破壞氧化壓力平衡誘導細胞死亡。
摘要(英) Colorectal cancer is one of the common cancers around the world. The therapy strategy for colorectal cancer is mainly dependent on surgery combined with chemotherapy and radiotherapy, which is effective in the early stage of colorectal cancer but poorly effective in the metastasis stage. Hence, it’s in urgent need of discovery effective chemotherapy for colorectal cancer. Nuclear factor erythroid 2–related factor 2 (Nrf2) regulates oxidative homeostasis and metabolic process in cancer cells Evidence has shown that tumor cells highly depend on sustained activation of Nrf2 for survival and proliferation, also known as Nrf2 addiction, which is associated with cancer cell metastasis and poor prognosis. Therefore, targeting Nrf2 is a promising therapeutic strategy for Nrf2-addicted cancers. In this study, we determined the anticancer effects of L-Selenocystine (SeC) in Nrf2-addicted colorectal cancer cells We compared the levels of Nrf2 and Nrf2-regulated proteins in mesenchymal stem cell (MSC), colorectal cancers (WiDr and C2BBe1). WiDr cells had Nrf2-addiction characteristics, and MSCs are the non-Nrf2-addicted cancers. Compared with WiDr cells, C2BBe1 cells express moderate levels of Nrf2 and Nrf2 regulated proteins. We found that SeC induced the highest cytotoxicity and ROS production in WiDr cells. After SeC treatment, Nrf2/Keap1/p62 pathway was inhibited in WiDr cells but activated in MSCs. Moreover, SeC treatment increased cytosolic and mitochondrial superoxides production in WiDr cells but not in C2BBe1 cells. Antioxidants decreased SeC-induced oxidative stress, rescued cytotoxicity of SeC, and increased levels of Nrf2-downstream proteins. Meanwhile, SeC treatment also decreased levels of autophagy proteins in WiDr cells but increased those in MSCs. We utilized autophagy inhibitors to clarify the role of autophagy in SeC-induced cell death. Autophagy inhibitor increased cell mortality in SeC-treated WiDr cells. Antioxidants partially recovered the expression of autophagy-associated proteins in SeC-treated WiDr cells. C2BBe1 cells had lower levels of Nrf2 which show a slower cytotoxic effect and Nrf2/Keap1/P62 inhibition comparison with those of in WiDr cells after SeC treatment. We utilized siRNA transfection to knock down Keap1 to mimic Nrf2 addicted status, the sensitivity to SeC and ROS production were increased in SeC-treated C2BBe1 cells. However, Nrf2 knockdown recovers the cell viability after treatment in WiDr cells. In summary, our results indicated that SeC effectively inhibits Nrf2 and autophagy pathway, and triggers oxidative stress, leading to cell death in Nrf2-addicted cancer cells.
關鍵字(中) ★ 結直腸癌
★ 左旋硒代胱胺酸
★ 氧化壓力
★ 細胞自噬
關鍵字(英) ★ Nrf2
論文目次 中文摘要 I
英文摘要 II
致謝 IV
目錄 V
圖目錄 VIIII
縮寫檢索表 VIII
第一章 緒論 1
1.1 結直腸癌 ( Colorectal Carcinoma, CRC ) 之發生與治療 1
1.2 Nuclear factor erythroid 2–related factor 2 (Nrf2) 之訊號途徑與癌細胞 Nrf2 成癮………………………………………………………………………...3
1.3 細胞自噬 (Autophagy) 之訊息傳導 7
1.4 左旋硒代胱胺酸 ( L-Selenocystine, SeC ) 9
第二章 實驗材料及方法 12
2.1實驗材料 12
2.1.1實驗細胞株 12
2.1.2實驗材料 12
2.1.3 試劑 12
2.1.4. 耗材 15
2.1.5 儀器 15
2.2實驗方法 16
2.2.1細胞培養及處理方法 16
2.2.2細胞裂解液製備與蛋白質濃度測定 16
2.2.3西方墨點法 17
2.2.4硒代胱胺酸 (L-Selenocystine) 原液配製 19
2.2.5細胞存活率測試 (MTT assay, Thiazolyl Blue Tetrazolium Bromide)………………………………………………………………………..20
2.2.6氧化壓力測試 20
2.2.7超氧陰離子 ( O2- ) 之檢測 21
2.2.8免疫螢光染色 21
2.2.9細胞轉染 22
2.2.10作圖軟體與統計方法 23
第三章 結果 25
3.1 SeC 影響 Nrf2 成癮的結直腸癌細胞的存活與氧化壓力累積 25
3.2 SeC 抑制 Nrf2 成癮的結直腸癌細胞之Nrf2/Keap1/p62 訊號途徑 26
3.3 SeC 誘導Nrf2成癮的癌細胞產生超氧陰離子 28
3.4 SeC藉由氧化壓力影響 Nrf2/Keap1/p62 訊號途徑 30
3.5 SeC抑制Nrf2 成癮的結直腸癌細胞之細胞自噬形成 32
3.6 C2BBe1細胞對SeC的敏感度和WiDr細胞相較低 34
3.7 Nrf2表現量影響SeC的細胞毒性與氧化壓力產生 35
第四章 討論 37
第五章 參考文獻 46
圖 53
附錄一 72
參考文獻 [1] P. Ding, D. Liska, P. Tang, J. Shia, L. Saltz, K. Goodman, R.J. Downey, G.M. Nash, L.K. Temple, P.B. Paty, J.G. Guillem, W.D. Wong, M.R. Weiser, Pulmonary recurrence predominates after combined modality therapy for rectal cancer: an original retrospective study, Ann Surg 256(1) (2012) 111-6.
[2] M.J. O′Connell, M.E. Campbell, R.M. Goldberg, A. Grothey, J.F. Seitz, J.K. Benedetti, T. Andre, D.G. Haller, D.J. Sargent, Survival following recurrence in stage II and III colon cancer: findings from the ACCENT data set, J Clin Oncol 26(14) (2008) 2336-41.
[3] J.L. Silva, E.A. Cino, I.N. Soares, V.F. Ferreira, A.P.d.O. G, Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer, Acc Chem Res 51(1) (2018) 181-190.
[4] Y. Takeuchi, N. Kimura, T. Murayama, Y. Machida, D. Iejima, T. Nishimura, M. Terashima, Y. Wang, M. Li, R. Sakamoto, M. Yamamoto, N. Itano, Y. Inoue, M. Ito, N. Yoshida, J.I. Inoue, K. Akashi, H. Saya, K. Fujita, M. Kuroda, I. Kitabayashi, D. Voon, T. Suzuki, A. Tojo, N. Gotoh, The membrane-linked adaptor FRS2beta fashions a cytokine-rich inflammatory microenvironment that promotes breast cancer carcinogenesis, Proc Natl Acad Sci U S A 118(43) (2021).
[5] E. Volkova, B.A. Robinson, J. Willis, M.J. Currie, G.U. Dachs, Marginal effects of glucose, insulin and insulin-like growth factor on chemotherapy response in endothelial and colorectal cancer cells, Oncol Lett 7(2) (2014) 311-320.
[6] K. Simon, Colorectal cancer development and advances in screening, Clin Interv Aging 11 (2016) 967-76.
[7] U.S. Srinivas, J. Dyczkowski, T. Beissbarth, J. Gaedcke, W.Y. Mansour, K. Borgmann, M. Dobbelstein, 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair, Oncotarget 6(14) (2015) 12574-86.
[8] X.Q. Zhao, Y.F. Zhang, Y.F. Xia, Z.M. Zhou, Y.Q. Cao, Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells, Oncol Lett 10(3) (2015) 1287-1292.
[9] W.C. Tsai, D.Y. Hueng, C.R. Lin, T.C. Yang, H.W. Gao, Nrf2 Expressions Correlate with WHO Grades in Gliomas and Meningiomas, Int J Mol Sci 17(5) (2016).
[10] G.M. DeNicola, P.H. Chen, E. Mullarky, J.A. Sudderth, Z. Hu, D. Wu, H. Tang, Y. Xie, J.M. Asara, K.E. Huffman, Wistuba, II, J.D. Minna, R.J. DeBerardinis, L.C. Cantley, NRF2 regulates serine biosynthesis in non-small cell lung cancer, Nat Genet 47(12) (2015) 1475-81.
[11] Y. Onodera, H. Motohashi, K. Takagi, Y. Miki, Y. Shibahara, M. Watanabe, T. Ishida, H. Hirakawa, H. Sasano, M. Yamamoto, T. Suzuki, NRF2 immunolocalization in human breast cancer patients as a prognostic factor, Endocr Relat Cancer 21(2) (2014) 241-52.
[12] L.M. Aleksunes, M.J. Goedken, C.E. Rockwell, J. Thomale, J.E. Manautou, C.D. Klaassen, Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity, J Pharmacol Exp Ther 335(1) (2010) 2-12.
[13] W. Shuhua, S. Chenbo, L. Yangyang, G. Xiangqian, H. Shuang, L. Tangyue, T. Dong, Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma, Hum Pathol 46(11) (2015) 1752-9.
[14] E. Panieri, P. Telkoparan-Akillilar, S. Suzen, L. Saso, The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives, Biomolecules 10(5) (2020).
[15] H. Kitamura, H. Motohashi, NRF2 addiction in cancer cells, Cancer Sci 109(4) (2018) 900-911.
[16] T. Saito, Y. Ichimura, K. Taguchi, T. Suzuki, T. Mizushima, K. Takagi, Y. Hirose, M. Nagahashi, T. Iso, T. Fukutomi, M. Ohishi, K. Endo, T. Uemura, Y. Nishito, S. Okuda, M. Obata, T. Kouno, R. Imamura, Y. Tada, R. Obata, D. Yasuda, K. Takahashi, T. Fujimura, J. Pi, M.S. Lee, T. Ueno, T. Ohe, T. Mashino, T. Wakai, H. Kojima, T. Okabe, T. Nagano, H. Motohashi, S. Waguri, T. Soga, M. Yamamoto, K. Tanaka, M. Komatsu, p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming, Nat Commun 7 (2016) 12030.
[17] B. Madajewski, M.A. Boatman, G. Chakrabarti, D.A. Boothman, E.A. Bey, Depleting Tumor-NQO1 Potentiates Anoikis and Inhibits Growth of NSCLC, Mol Cancer Res 14(1) (2016) 14-25.
[18] D. Ross, D. Siegel, NQO1 in protection against oxidative stress, Current Opinion in Toxicology 7 (2018) 67-72.
[19] H.Q. Fan, W. He, K.F. Xu, Z.X. Wang, X.Y. Xu, H. Chen, FTO Inhibits Insulin Secretion and Promotes NF-kappaB Activation through Positively Regulating ROS Production in Pancreatic beta cells, PLoS One 10(5) (2015) e0127705.
[20] G. Gloire, S. Legrand-Poels, J. Piette, NF-kappaB activation by reactive oxygen species: fifteen years later, Biochem Pharmacol 72(11) (2006) 1493-505.
[21] J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, W. Dong, ROS and ROS-Mediated Cellular Signaling, Oxid Med Cell Longev 2016 (2016) 4350965.
[22] X. Wang, J.Z. Liu, J.X. Hu, H. Wu, Y.L. Li, H.L. Chen, H. Bai, C.X. Hai, ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation, Free Radic Biol Med 51(2) (2011) 539-51.
[23] J. Chen, Z. Zhang, L. Cai, Diabetic cardiomyopathy and its prevention by nrf2: current status, Diabetes Metab J 38(5) (2014) 337-45.
[24] J.W. Kaspar, S.K. Niture, A.K. Jaiswal, Nrf2:INrf2 (Keap1) signaling in oxidative stress, Free Radic Biol Med 47(9) (2009) 1304-9.
[25] X. Sun, Z. Ou, R. Chen, X. Niu, D. Chen, R. Kang, D. Tang, Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology 63(1) (2016) 173-84.
[26] Y. Ichimura, S. Waguri, Y.S. Sou, S. Kageyama, J. Hasegawa, R. Ishimura, T. Saito, Y. Yang, T. Kouno, T. Fukutomi, T. Hoshii, A. Hirao, K. Takagi, T. Mizushima, H. Motohashi, M.S. Lee, T. Yoshimori, K. Tanaka, M. Yamamoto, M. Komatsu, Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy, Mol Cell 51(5) (2013) 618-31.
[27] C. Meng, J. Zhan, D. Chen, G. Shao, H. Zhang, W. Gu, J. Luo, The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2, Oncogene 40(9) (2021) 1706-1720.
[28] A. Hammad, A. Namani, M. Elshaer, X.J. Wang, X. Tang, "NRF2 addiction" in lung cancer cells and its impact on cancer therapy, Cancer Lett 467 (2019) 40-49.
[29] K. Taguchi, M. Yamamoto, The KEAP1-NRF2 System in Cancer, Front Oncol 7 (2017) 85.
[30] J.I. Kang, D.H. Kim, K.W. Sung, S.M. Shim, H. Cha-Molstad, N.K. Soung, K.H. Lee, J. Hwang, H.G. Lee, Y.T. Kwon, B.Y. Kim, p62-Induced Cancer-Associated Fibroblast Activation via the Nrf2-ATF6 Pathway Promotes Lung Tumorigenesis, Cancers (Basel) 13(4) (2021).
[31] H. Zhu, H. Luo, W. Zhang, Z. Shen, X. Hu, X. Zhu, Molecular mechanisms of cisplatin resistance in cervical cancer, Drug Des Devel Ther 10 (2016) 1885-95.
[32] L. Gao, Y. Morine, S. Yamada, Y. Saito, T. Ikemoto, K. Tokuda, C. Takasu, K. Miyazaki, M. Shimada, Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells, PLoS One 16(9) (2021) e0256755.
[33] Q. Wang, C. Bin, Q. Xue, Q. Gao, A. Huang, K. Wang, N. Tang, GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis, Cell Death Dis 12(5) (2021) 426.
[34] L.M. Aleksunes, A.L. Slitt, J.M. Maher, L.M. Augustine, M.J. Goedken, J.Y. Chan, N.J. Cherrington, C.D. Klaassen, J.E. Manautou, Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2, Toxicol Appl Pharmacol 226(1) (2008) 74-83.
[35] G. Das, B.V. Shravage, E.H. Baehrecke, Regulation and function of autophagy during cell survival and cell death, Cold Spring Harb Perspect Biol 4(6) (2012).
[36] M.B. Azad, Y. Chen, S.B. Gibson, Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment, Antioxid Redox Signal 11(4) (2009) 777-90.
[37] F. Li, J. Li, P.H. Wang, N. Yang, J. Huang, J. Ou, T. Xu, X. Zhao, T. Liu, X. Huang, Q. Wang, M. Li, L. Yang, Y. Lin, Y. Cai, H. Chen, Q. Zhang, SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling, Biochim Biophys Acta Mol Basis Dis 1867(12) (2021) 166260.
[38] Y. Tang, F. Ren, X. Cong, Y. Kong, Y. Tian, Y. Xu, J. Fan, Overexpression of ribonuclease inhibitor induces autophagy in human colorectal cancer cells via the Akt/mTOR/ULK1 pathway, Mol Med Rep 19(5) (2019) 3519-3526.
[39] J.M. Rodriguez-Vargas, M.J. Ruiz-Magana, C. Ruiz-Ruiz, J. Majuelos-Melguizo, A. Peralta-Leal, M.I. Rodriguez, J.A. Munoz-Gamez, M.R. de Almodovar, E. Siles, A.L. Rivas, M. Jaattela, F.J. Oliver, ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy, Cell Res 22(7) (2012) 1181-98.
[40] N.C. Chang, Autophagy and Stem Cells: Self-Eating for Self-Renewal, Front Cell Dev Biol 8 (2020) 138.
[41] B. Zhang, R. Hou, Z. Zou, T. Luo, Y. Zhang, L. Wang, B. Wang, Mechanically induced autophagy is associated with ATP metabolism and cellular viability in osteocytes in vitro, Redox Biol 14 (2018) 492-498.
[42] J. Wang, G.S. Wu, Role of autophagy in cisplatin resistance in ovarian cancer cells, J Biol Chem 289(24) (2014) 17163-73.
[43] J.F. Lin, Y.C. Lin, T.F. Tsai, H.E. Chen, K.Y. Chou, T.I. Hwang, Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells, Drug Des Devel Ther 11 (2017) 1517-1533.
[44] Z. Tang, B. Hu, F. Zang, J. Wang, X. Zhang, H. Chen, Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration, Cell Death Dis 10(7) (2019) 510.
[45] K. El-Bayoumy, R. Sinha, Mechanisms of mammary cancer chemoprevention by organoselenium compounds, Mutat Res 551(1-2) (2004) 181-97.
[46] D. Hu, Q. Liu, H. Cui, H. Wang, D. Han, H. Xu, Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells, Life Sci 77(17) (2005) 2098-110.
[47] U. Peters, Y. Takata, Selenium and the prevention of prostate and colorectal cancer, Mol Nutr Food Res 52(11) (2008) 1261-72.
[48] A. Connelly-Frost, C. Poole, J.A. Satia, L.L. Kupper, R.C. Millikan, R.S. Sandler, Selenium, apoptosis, and colorectal adenomas, Cancer Epidemiol Biomarkers Prev 15(3) (2006) 486-93.
[49] M.A. Reeves, P.R. Hoffmann, The human selenoproteome: recent insights into functions and regulation, Cell Mol Life Sci 66(15) (2009) 2457-78.
[50] M.R. Bosl, K. Takaku, M. Oshima, S. Nishimura, M.M. Taketo, Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp), Proc Natl Acad Sci U S A 94(11) (1997) 5531-4.
[51] C.D. Fan, X.Y. Fu, Z.Y. Zhang, M.Z. Cao, J.Y. Sun, M.F. Yang, X.T. Fu, S.J. Zhao, L.R. Shao, H.F. Zhang, X.Y. Yang, B.L. Sun, Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk, Sci Rep 7(1) (2017) 6465.
[52] D.G. Pons, C. Moran, M. Alorda-Clara, J. Oliver, P. Roca, J. Sastre-Serra, Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells, Nutrients 12(3) (2020).
[53] C. Souza, D.A. Monico, A.C. Tedesco, Implications of dichlorofluorescein photoinstability for detection of UVA-induced oxidative stress in fibroblasts and keratinocyte cells, Photochem Photobiol Sci 19(1) (2020) 40-48.
[54] T. Liu, Y.F. Lv, J.L. Zhao, Q.D. You, Z.Y. Jiang, Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications, Free Radic Biol Med 168 (2021) 129-141.
[55] E. Habib, K. Linher-Melville, H.-X. Lin, G. Singh, Expression of xCT and activity of system xc− are regulated by NRF2 in human breast cancer cells in response to oxidative stress, Redox Biology 5 (2015) 33-42.
[56] Y.Q. Zang, Y.Y. Feng, Y.H. Luo, Y.Q. Zhai, X.Y. Ju, Y.C. Feng, Y.N. Sheng, J.R. Wang, C.Q. Yu, C.H. Jin, Quinalizarin induces ROSmediated apoptosis via the MAPK, STAT3 and NFkappaB signaling pathways in human breast cancer cells, Mol Med Rep 20(5) (2019) 4576-4586.
[57] J.J. Yoon, J.W. Jeong, E.O. Choi, M.J. Kim, H. Hwang-Bo, H.J. Kim, S.H. Hong, C. Park, D.H. Lee, Y.H. Choi, Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes, EXCLI J 16 (2017) 426-438.
[58] V.T. Bortoluzzi, C.S. Dutra Filho, C.M.D. Wannmacher, Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling, Metab Brain Dis 36(4) (2021) 523-543.
[59] J.R. Treberg, C.L. Quinlan, M.D. Brand, Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I), Journal of Biological Chemistry 286(31) (2011) 27103-27110.
[60] S. Vega-Rubin-de-Celis, The Role of Beclin 1-Dependent Autophagy in Cancer, Biology (Basel) 9(1) (2019).
[61] R.C. Wang, Y. Wei, Z. An, Z. Zou, G. Xiao, G. Bhagat, M. White, J. Reichelt, B. Levine, Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation, Science 338(6109) (2012) 956-9.
[62] X. Shi, Y. Li, J. Hu, B. Yu, Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes, Int J Mol Med 38(1) (2016) 123-30.
[63] J. Gong, H. Xu, Current Perspectives on the Role of Nrf2 in 5-Fluorouracil Resistance in Colorectal Cancer, Anticancer Agents Med Chem 21(17) (2021) 2297-2303.
[64] J.L. Roh, E.H. Kim, H. Jang, D. Shin, Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis, Redox Biol 11 (2017) 254-262.
[65] Y.H. Tong, B. Zhang, Y.Y. Yan, Y. Fan, J.W. Yu, S.S. Kong, D. Zhang, L. Fang, D. Su, N.M. Lin, Dual-negative expression of Nrf2 and NQO1 predicts superior outcomes in patients with non-small cell lung cancer, Oncotarget 8(28) (2017) 45750-45758.
[66] F.T. Ndombera, Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism, Pure and Applied Chemistry 89(9) (2017) 1333-1348.
[67] H. Kim, G.R. Lee, J. Kim, J.Y. Baek, Y.J. Jo, S.E. Hong, S.H. Kim, J. Lee, H.I. Lee, S.K. Park, H.M. Kim, H.J. Lee, T.S. Chang, S.G. Rhee, J.S. Lee, W. Jeong, Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage, Free Radic Biol Med 91 (2016) 264-74.
[68] S.C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B.B. Aggarwal, Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy, Antioxidants & Redox Signaling 16(11) (2012) 1295-1322.
[69] I.S. Harris, G.M. DeNicola, The Complex Interplay between Antioxidants and ROS in Cancer, Trends Cell Biol 30(6) (2020) 440-451.
[70] D.Y. Lee, M.Y. Song, E.H. Kim, Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals, Antioxidants (Basel) 10(5) (2021).
[71] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione: new roles in redox signaling for an old antioxidant, Front Pharmacol 5 (2014) 196.
[72] S. Cao, F.A. Durrani, K. Tóth, Y.M. Rustum, Se-methylselenocysteine offers selective protection against toxicity and potentiates the antitumour activity of anticancer drugs in preclinical animal models, British Journal of Cancer 110(7) (2014) 1733-1743.
[73] J.C. Wu, F.Z. Wang, M.L. Tsai, C.Y. Lo, V. Badmaev, C.T. Ho, Y.J. Wang, M.H. Pan, Se-Allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells, Mol Nutr Food Res 59(12) (2015) 2511-22.
[74] C. Porta, C. Paglino, A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer, Frontiers in Oncology 4 (2014).
[75] M. Mauthe, I. Orhon, C. Rocchi, X. Zhou, M. Luhr, K.-J. Hijlkema, R.P. Coppes, N. Engedal, M. Mari, F. Reggiori, Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy 14(8) (2018) 1435-1455.
[76] A.L. Eggler, E. Small, M. Hannink, A.D. Mesecar, Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1, Biochem J 422(1) (2009) 171-80.
[77] Q. Zhang, Z.Y. Zhang, H. Du, S.Z. Li, R. Tu, Y.F. Jia, Z. Zheng, X.M. Song, R.L. Du, X.D. Zhang, DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer, Cell Death Differ 26(11) (2019) 2300-2313.
[78] M.M. Silva, C.R.R. Rocha, G.S. Kinker, A.L. Pelegrini, C.F.M. Menck, The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells, Scientific Reports 9(1) (2019).
[79] V.I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions, J Amino Acids 2012 (2012) 736837.
指導教授 羅月霞(Yueh-Hsia Luo) 審核日期 2022-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明