博碩士論文 108821609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.140.185.147
姓名 黃美蘭(Dea Jolie Chrestella)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(tRNA aminoacylation by a naturally occurring mini-AlaRS)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 丙胺酸-tRNA 合成酶 (Alanyl-tRNA synthetase, AlaRS) 屬於轉譯酵素中的一員,負責將丙胺酸 (Alanine) 轉移到其同源 tRNA上,形成 Ala-tRNAAla,然後將其遞送至核醣體為著蛋白質合成。AlaRS都有四個功能域,包含「催化結構域」、「tRNA 辨識結構域域」、「校正結構域」和「C-Ala結構域」。在AlaRS的tRNA 辨識結構域中有兩個高度保守的胺基酸殘基N及D (例如E. coli AlaRS的 N303 和 D400) 與 tRNAAla 中的接受柄上的G3:U70有專一性的交互作用。有趣的是,一種天然存在的mini-AlaRS被發現於卡氏棘阿米巴 (Acanthamoeba castellanii) 中的圖邦病毒 (Tupanvirus),該酵素缺乏校正結構域和 C-Ala 結構域,並且在其 tRNA 辨識結構域中含有的是 P/T 而不是 N/D。親緣演化分析顯示,這種mini-AlaRS的親緣關係比起原核生物的AlaRS,與真核生物AlaRS的關係更緊密,體現出它起源於真核生物。胺醯化分析 (Aminoacylation assay) 顯示,儘管缺乏 N/D 胺基酸,但圖邦病毒的 AlaRS (TuAlaRS) 能夠專一地辨認含有G3:U70 的tRNAAla。然而奇怪的是,突變P/T卻對它的胺醯化活性或專一性沒有影響。另外,TuAlaRS能以相似的效率作用於microhelixAla;相對的,E. coli AlaRS偏好作用於tRNAAla過於microhelixAla。電泳遲緩分析更進一步顯示圖邦病毒AlaRS 與野生型 (G3:U70) 和突變型 (非 G3:U70) 的tRNAAla和microhelixAla 的結合有相似的親和度;而E. coli AlaRS偏向於與野生型tRNAAla結合。由於缺乏校正結構區域,因此圖邦病毒AlaRS相較於E. coli酵素,表現出更高機率的錯誤性胺醯化作用。本研究的重點在於這自然存在於mini-AlaRS的強力丙胺酸化活性。
摘要(英) Alanyl-tRNA synthetase (AlaRS) belongs to a family of translation enzymes and is responsible for transferring alanine to its cognate tRNA, forming Ala-tRNAAla, which is then delivered to ribosomes for protein synthesis. AlaRS contains four functional domains: catalysis, tRNA-recognition, editing, and C-Ala domains. Two highly conserved amino acid residues N and D in the tRNA-recognition domain of AlaRS (N303 and D400 in E. coli AlaRS) make specific contacts with the identity element G3:U70 in the acceptor stem of tRNAAla. Interestingly, a naturally occurring mini-AlaRS was identified in the Tupanvirus of Acanthamoeba castellanii. This enzyme lacks the editing and C-Ala domains and contains P/T instead of N/D in its tRNA-recognition domain. Phylogenetic analysis indicated that this mini-AlaRS is more closely related to eukaryotic AlaRSs than to prokaryotic AlaRSs, suggesting its eukaryotic origin. Aminoacylation assay showed that Tupanvirus AlaRS specifically charges G3:U70-containing tRNAAla despite lacking the N/D residues. However, mutation of P/T had little effect on its aminoacylation activity or specificity. In addition, this enzyme could charge microhelixAla to a similar level. In contrast, E. coli AlaRS strongly preferred tRNAAla over microhelixAla. Electrophoretic mobility shift assay further showed that Tupanvirus AlaRS bound wild-type (G3:U70) and mutant (non-G3:U70) tRNAAla and microhelixAla with a similar affinity, while E. coli AlaRS preferentially bound WT tRNAAla. Due to the lack of the editing domain, Tupanvirus AlaRS exhibited a higher misacylation rate compared with the E. coli enzyme. This study highlights the strong alanylation activity of a naturally occurring mini-AlaRS.
關鍵字(中) ★ alanyl-tRNA synthetase
★ aminoacylation
★ giant virus
★ identity element
★ tRNA
關鍵字(英) ★ alanyl-tRNA synthetase
★ aminoacylation
★ giant virus
★ identity element
★ tRNA
論文目次 ABSTRACT i ABSTRACT (in Chinese) ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv TABLE OF FIGURES v ABBREVIATION vii
CHAPTER I INTRODUCTION 1 1.1.Aminoacyl-tRNA synthetases belong to a group of translation enzymes 1 1.2.Alanyl-tRNA Synthetase possesses a prototype structure 2 1.2.1.Aminoacylation domain of AlaRS for tRNAAla aminoacylation 2 1.2.2.Editing activity of AlaRS for removing misacylated tRNAAla 2 1.2.3.C-Ala domain of AlaRS constitutes the major tRNA-binding module 3 1.3.AlaRS specifically recognizes tRNAAla with G3:U70 3 1.4.The genome of Tupanvirus encodes a mini-AlaRS 4 1.5.Specific aims of this thesis 5 CHAPTER II METHODS 6 2.1.Cloning of AlaRS genes 6 2.2.Cloning of genes encoding tRNAAla and microhelixAla 6 2.3.Expression and purification of AlaRSs 7
2.4.Preparation of tRNAAla and microhelixAla 7 2.5.Aminoacylation assay 8 2.6.Electrophoresis mobility shift assay (EMSA) 8 2.7.Protein sequence alignment, phylogenetic analysis, and 3D structure prediction 9 CHAPTER III RESULTS 10 3.1.TuAlaRS comprises only aminoacylation domain 10 3.2.Tupanvirus genome encodes 4 isoacceptors of tRNAAla 10 3.3.Aminoacylation of TuAlaRS 11 3.4.tRNAAla Specificity of TuAlaRS 11 3.5.TuAlaRS efficiently aminoacylates microhelixAla 11 3.6.TuAlaRS robustly binds tRNAAla and microhelixAla 12 3.7.Kinetic parameters of tRNAAla and microhelixAla aminoacylation by TuAlaRS 13 3.8.P/T of TuAlaRS is not involved in recognition of tRNAAla 14 3.9.TuAlaRS mischarges Gly to tRNAAla to a higher level 14 3.10.Phylogenetic relationship of TuAlaRS with other AlaRSs 15 CHAPTER IV DISCUSSION 16 4.1.Mini-AlaRS specifically charges tRNAAla 16 4.2.TuAlaRS may evolve a new way to contact the acceptor stem of tRNAAla 17 4.3.TuAlaRS may have lost its C-Ala and editing domains lately during evolution 18 LIST OF FIGURES 20 LIST OF TABLES 32
APPENDIX I Plasmid List 33 APPENDIX II Primer & Synthesized Nucleotides 35 REFERENCES 37
參考文獻 Abergel, C., Rudinger-Thirion, J., Giegé, R., & Claverie, J.-M. (2007). Virus-Encoded Aminoacyl-tRNA Synthetases: Structural and Functional Characterization of Mimivirus TyrRS and MetRS. Journal of Virology, 81(22), 12406–12417. https://doi.org/10.1128/jvi.01107-07
Abrahão, J., Silva, L., Silva, L. S., Khalil, J. Y. B., Rodrigues, R., Arantes, T., Assis, F., Boratto, P., Andrade, M., Kroon, E. G., Ribeiro, B., Bergier, I., Seligmann, H., Ghigo, E., Colson, P., Levasseur, A., Kroemer, G., Raoult, D., & La Scola, B. (2018). Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03168-1
Antika, T. R., Chrestella, D. J., Ivanesthi, I. R., Rida, G. R. N., Chen, K. Y., Liu, F. G., Lee, Y. C., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2022). Gain of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids Research, 50(4), 2190–2200. https://doi.org/10.1093/nar/gkac026
Arutaki, M., Kurihara, R., Matsuoka, T., Inami, A., Tokunaga, K., Ohno, T., Takahashi, H., Takano, H., Ando, T., Mutsuro-Aoki, H., Umehara, T., & Tamura, K. (2020). G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases. Journal of Molecular Evolution, 88(6), 501–509. https://doi.org/10.1007/s00239-020-09945-1
Beebe, K., De Pouplana, L. R., & Schimmel, P. (2003). Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO Journal, 22(3), 668–675. https://doi.org/10.1093/emboj/cdg065
Beebe, K., Mock, M., Merriman, E., & Schimmel, P. (2008). Distinct domains of tRNA synthetase recognize the same base pair. Nature, 451(7174), 90–93. https://doi.org/10.1038/nature06454
Brandes, N., & Linial, M. (2019). Giant Viruses—Big Surprises. Figure 1, 1–12.
Buechter, D. D., & Schimmel, P. (1993). Dissection of a Class II tRNA Synthetase: Determinants for Minihelix Recognition Are Tightly Associated with Domain for Amino Acid Activation. Biochemistry, 32(19), 5267–5272. https://doi.org/10.1021/bi00070a039
Chang, C. P., Tseng, Y. K., Ko, C. Y., & Wang, C. C. (2012). Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Research, 40(1), 314–322. https://doi.org/10.1093/nar/gkr724
Chihade, J. W., Hayashibara, K., Shiba, K., & Schimmel, P. (1998). Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine. Biochemistry, 37(25), 9193–9202. https://doi.org/10.1021/bi9804636
Chihade, J. W., & Schimmel, P. (1999). Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12316–12321. https://doi.org/10.1073/pnas.96.22.12316
Chong, Y. E., Guo, M., Yang, X. L., Kuhle, B., Naganuma, M., Sekine, S. ichi, Yokoyama, S., & Schimmel, P. (2018). Distinct ways of G:U recognition by conserved tRNA binding motifs. Proceedings of the National Academy of Sciences of the United States of America, 115(29), 7527–7532. https://doi.org/10.1073/pnas.1807109115
Claverie, J. M., & Abergel, C. (2018). Mimiviridae: An expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses, 10(9), 8–15. https://doi.org/10.3390/v10090506
Eriani, G., Cavarelli, J., Martin, F., Ador, L., Rees, B., Thierry, J. C., Gangloff, J., & Moras, D. (1995). The class II aminoacyl-tRNA synthetases and their active site: Evolutionary conservation of an ATP binding site. Journal of Molecular Evolution, 40(5), 499–508. https://doi.org/10.1007/BF00166618
Eriani, G., Dirheimer, G., & Gangloff, J. (1991). Cysteinyl-tRNA synthetase: Determination of the last E.coli aminoacyl-tRNA synthetase primary structure. Nucleic Acids Research, 19(2), 265–269. https://doi.org/10.1093/nar/19.2.265
Francklyn, C. S., First, E. A., Perona, J. J., & Hou, Y.-M. (2008). Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods, 44(2), 100–118. https://doi.org/10.1016/j.ymeth.2007.09.007
Francklyn, C., & Schimmel, P. (1989). Aminoacylation of RNA minihelices with alanine. Nature, 337(6206), 478–481. https://doi.org/10.1038/337478a0
Guo, M., Chong, Y. E., Beebe, K., Shapiro, R., Yang, X.-L., & Schimmel, P. (2009). The C-Ala Domain Brings Together Editing and Aminoacylation Functions on One tRNA. Science, 325(5941), 744–747. https://doi.org/10.1126/science.1174343
Guo, M., Yang, X. L., & Schimmel, P. (2010). New functions of aminoacyl-tRNA synthetases beyond translation. Nature Reviews Molecular Cell Biology, 11(9), 668–674. https://doi.org/10.1038/nrm2956
Hilander, T., Zhou, X. L., Konovalova, S., Zhang, F. P., Euro, L., Chilov, D., Poutanen, M., Chihade, J., Wang, E. D., & Tyynismaa, H. (2018). Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Research, 46(2), 849–860. https://doi.org/10.1093/nar/gkx1231
Hou, Y. M., & Schimmel, P. (1988). A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333(6169), 140–145. https://doi.org/10.1038/333140a0
Ibba, M., & Söll, D. (2000). Aminoacyl-tRNA Synthesis. Annual Review of Biochemistry, 69(1), 617–650. https://doi.org/10.1146/annurev.biochem.69.1.617
Jasin, M., Regan, L., & Schimmel, P. (1983). Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, 306(5942), 441–447. https://doi.org/10.1038/306441a0
Koonin, E. V, & Yutin, N. (2018). Multiple evolutionary origins of giant viruses. F1000Research, 7(0), 1840. https://doi.org/10.12688/f1000research.16248.1
Kuhle, B., Chihade, J., & Schimmel, P. (2020). Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-14725-y
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lechler, A., Martin, A., Zuleeg, T., Limmer, S., & Kreutzer, R. (1997). A biologically active 53 kDa fragment of overproduced alanyl-tRNA synthetase from Thermus thermophilus HB8 specifically interacts with tRNA(Ala) acceptor helix. Nucleic Acids Research, 25(14), 2737–2744. https://doi.org/10.1093/nar/25.14.2737
Ling, J., Reynolds, N., & Ibba, M. (2009). Aminoacyl-tRNA synthesis and translational quality control. Annual Review of Microbiology, 63, 61–78. https://doi.org/10.1146/annurev.micro.091208.073210
Liu, Y., Satz, J. S., Vo, M. N., Nangle, L. A., Schimmel, P., & Ackerman, S. L. (2014). Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17570–17575. https://doi.org/10.1073/pnas.1420196111
Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R., & Schimmel, P. (1991). Specificity for aminoacylation of an RNA helix: An unpaired, exocyclic amino group in the minor groove. Science, 253(5021), 784–786. https://doi.org/10.1126/science.1876835
Naganuma, M., Sekine, S. I., Chong, Y. E., Guo, M., Yang, X. L., Gamper, H., Hou, Y. M., Schimmel, P., & Yokoyama, S. (2014). The selective tRNA aminoacylation mechanism based on a single G.U pair. Nature, 510(7506), 507–511. https://doi.org/10.1038/nature13440
Naganuma, M., Sekine, S. I., Fukunaga, R., & Yokoyama, S. (2009). Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8489–8494. https://doi.org/10.1073/pnas.0901572106
Oliveira, G., La Scola, B., & Abrahão, J. (2019). Giant virus vs amoeba: Fight for supremacy. Virology Journal, 16(1), 1–12. https://doi.org/10.1186/s12985-019-1244-3
Rubio Gomez, M. A., & Ibba, M. (2020). Aminoacyl-tRNA synthetases. RNA, 26(8), 910–936. https://doi.org/10.1261/rna.071720.119
Ryder, S. P., Recht, M. I., & Williamson, J. R. (2008). Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods in Molecular Biology, 488, 99–115. https://doi.org/10.1007/978-1-60327-475-3_7
Schimmel, P. (2011). Mistranslation and its control by tRNA synthetases. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1580), 2965–2971. https://doi.org/10.1098/rstb.2011.0158
Schulz, F., Yutin, N., Ivanova, N. N., Ortega, D. R., Lee, T. K., Vierheilig, J., Daims, H., Horn, M., Wagner, M., Jensen, G. J., Kyrpides, N. C., Koonin, E. V, & Woyke, T. (2017). Giant viruses with an expanded complement of translation system components. Science, 356(6333), 82–85. https://doi.org/10.1126/science.aal4657
Sun, L., Song, Y., Blocquel, D., Yang, X. L., & Schimmel, P. (2016). Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14300–14305. https://doi.org/10.1073/pnas.1617316113
Swairjo, M. A., Otero, F. J., Yang, X. L., Lovato, M. A., Skene, R. J., McRee, D. E., De Pouplana, L. R., & Schimmel, P. (2004). Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Molecular Cell, 13(6), 829–841. https://doi.org/10.1016/S1097-2765(04)00126-1
Tamura, K., Asahara, H., Himeno, H., Hasegawa, T., & Shimizu, M. (1991). Identity elements ofEscherichia coli tRNAAla. Journal of Molecular Recognition, 4(4), 129–132. https://doi.org/10.1002/jmr.300040404
Tang, H. L., Yeh, L. S., Ghen, N. K., Ripmaster, T., Schimmel, P., & Wang, C. C. (2004). Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. Journal of Biological Chemistry, 279(48), 49656–49663. https://doi.org/10.1074/jbc.M408081200
Tsui, W. C., & Fersht, A. R. (1981). Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Research, 9(18), 4627–4637. https://doi.org/10.1093/nar/9.18.4627
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
Yamada, T., Onimatsu, H., & Van Etten, J. L. (2006). Chlorella Viruses. Advances in Virus Research, 65(06), 293–336. https://doi.org/10.1016/S0065-3527(06)66006-5
Yutin, N., Wolf, Y. I., & Koonin, E. V. (2014). Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology, 466–467, 38–52. https://doi.org/10.1016/j.virol.2014.06.032
Zhang, J., & Ferré-D’amaré, A. R. (2016). The tRNA elbow in structure, recognition and evolution. Life, 6(1), 1–11. https://doi.org/10.3390/life6010003
指導教授 王健家教授(Chien-Chia Wang) 審核日期 2022-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明