博碩士論文 105230001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.119.19.18
姓名 吳柏廷(Bo-Ting Wu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 團藻自我推進的非線性現象研究
(A study of Nonlinear Phenonomena of Volvox self-propelling motion)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ DNA在微通道的熱泳行為
★ 溫度及鈣動力學對離體心臟心率之影響★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
★ Thermo-diffusiophoresis and their Thermodynamics★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
★ Effects of periodic and sustained stretching on cardiac culture★ 在外加振盪磁場中阻尼磁針的非線性動力學分析
★ 控制單一神經元的發放時間★ 非線性調控對心臟分岔現象的影響
★ 神經膠細胞對於神經網路同步爆發之影響★ A Study of Synchronized Burst Mechanisms in Neuronal Cultures
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用團藻的趨光性當作主動粒子,藉此研究團藻在黏滯液體中移動與阻塞現象。為了解團藻的基本性質,我們以光源驅使團藻移動,藉此計算團藻大小、軌跡與速度關係,並在不同黏度的培養液環境測量對團藻移動的影響。實驗結果發現,液體黏滯度越低時團藻速度越快,且有無光刺激的影響對團藻移動速度並無明顯差異。團藻半徑小時70μm速度與半徑正相關,但當團藻半徑大時70μm速度開始下降。
在阻塞方面,我們改變玻璃針管管徑、不同濃度PVP混合培養液改變液體黏滯度,來研究主動粒子在管徑改變、不同流速所造成的阻塞現象。以PVP重量百分濃度4%為例:我們發現在管子頸部與顆粒尺寸比在4.6、6.0與8.0時阻塞的比例為100%、80%與15%。
在棘輪部分,我們給予團藻各種持續的光刺激(線性、次方與指數)並觀察團藻分布情況。結果發現團藻會依光刺激的類型大略排列出匹配圖形。團藻在線性及次方亮度變化下,穩定度會比指數棘輪高。
摘要(英) This thesis uses volvox, with its phototaxis ability, as a self-driven particle system to study the motions and the phenomena of jamming in a viscous fluid. In order to measure the basic self-driven properties of volvox, the volvox is driven by light so as to find the relations between the size and the speed of volvox particles. Besides, we use fluid with different viscosity to study the viscous effects on their movement. Our experiment shows that the speed of volvox is negatively correlation with the viscosity of the fluid and their speed is independent of the intensity of the light source. The speed will reach a maximum when the radii of volvox particle are approximately 70μm.
To study the phenomenon of jamming , we shrink the central part of a glass tube (the neck) to different diameters, and use volvox suspended in medium with different viscosities produced by mixing with different PVP concentrations. We find that when the concentration of PVP is 4% , the jamming ratio are 100%、80% and 15% when the neck-to-particle size ratio is 4.6, 6 and 8 respectively. We also generate various background light simulations (linear, square and exponential) to observe the distribution of volvox under these backgrounds. We find that volvox would have a spatial distribution according to the intensity of the light. The stability of volvox is higher in the linear and square spatial light variations than an exponential one.
關鍵字(中) ★ 團藻
★ 自我推進
★ 非線性現象
關鍵字(英)
論文目次 目錄
摘要 vi
Abstract vii
目錄 ix
圖目錄 xii
表目錄 xv
符號說明 xvi
專有名詞中英對照 xviii
一、 簡介 1
1-1自我推進粒子(self-driven particle) 1
1-2團藻 2
1-2-1種類、結構 2
1-2-2繁殖 3
1-2-3團藻的移動 6
1-3棘輪(ratchet) 11
1-3-1棘輪 11
1-3-2位能棘輪 12
1-3-3熵分離器 13
1-4阻塞(jamming) 14
1-5總結 16
二、實驗方法 17
2-1培養團藻 17
2-2實驗架設 18
2-2-1全域刺激 18
2-2-2阻塞 19
2-2-3位能性棘輪 21
2-2-4投影機光源控制 23
2-3影像處理 24
2-3-1匯入影像 24
2-3-2計算背景 25
2-3-3去除雜訊 26
2-3-4偵測團藻 27
2-3-5團藻軌跡連結 29
2-3-6團藻在通道中的阻塞偵測 31
三、實驗結果 32
3-1團藻大小、溶液黏滯度與速度關係 32
3-1-1團藻移動穩定性分析 32
3-1-2團藻大小與速度關係 33
3-1-3溶液黏滯度與速度關係 36
3-2團藻的阻塞現象 37
3-2-1團藻的阻塞現象 37
3-2-2通道口徑大小對阻塞發生時間的影響 41
3-2-3PVP濃度對阻塞發生時間的影響 41
3-2-4 D與PVP濃度對阻塞發生比例的影響 42
3-3位能性棘輪對團藻移動的影響 43
3-3-1亮度變化對團藻分布的影響 43
3-3-2不同光亮度圖形對團藻分布的影響 46
3-3-3團藻在線性亮度變化下對移動的影響 49
四、結論與討論 51
參考文獻 53
附錄A PVP viscosity 57
參考文獻 [1] Ramaswamy, Sriram. "The mechanics and statistics of active matter." arXiv preprint arXiv:1004.1933 (2010).
[2] Schweitzer, Frank, and J. Doyne Farmer. Brownian agents and active particles: collective dynamics in the natural and social sciences. Vol. 1. Berlin: Springer, 2003.
[3] Bechinger, Clemens, et al. "Active particles in complex and crowded environments."
[4] Coleman, A. W. "A comparative analysis of the Volvocaceae (Chlorophyta) 1." Journal of phycology 48.3 (2012): 491-513.
[5] Hallmann, Armin. "Extracellular matrix and sex-inducing pheromone in Volvox." Int Rev Cytol 227 (2003): 131-182.
[6] Hoops, Harold J. "Flagellar, cellular and organismal polarity in Volvox carteri." Journal of Cell Science 104.1 (1993): 105-117.
[7] Matt, Gavriel, and James Umen. "Volvox: A simple algal model for embryogenesis, morphogenesis and cellular differentiation." Developmental biology 419.1 (2016): 99-113.
[8] Green, Kathleen J., and David L. Kirk. "Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos." The Journal of cell biology 91.3 (1981): 743-755.
[9] Viamontes, George I., and David L. Kirk. "Cell shape changes and the mechanism of inversion in Volvox." The Journal of cell biology 75.3 (1977): 719-730.
[10] Nishii, Ichiro, and Stephen M. Miller. "Volvox: simple steps to developmental complexity?." Current Opinion in Plant Biology 13.6 (2010): 646-653.
[11] Ueki, Noriko, et al. "How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox." BMC biology 8.1 (2010): 1-21.
[12] Ueki, Noriko, and Ken-ichi Wakabayashi. "Detergent-extracted Volvox model exhibits an anterior–posterior gradient in flagellar Ca2+ sensitivity." Proceedings of the National Academy of Sciences 115.5 (2018): E1061-E1068.
[13] Huth, Klaus. "Bewegung und orientierung bei Volvox aureus Ehrb. I. Mechanismus der phototaktischen reaktion." Zeitschrift fur Pflanzenphysiologie (1970).
[14] Drescher, Knut, Raymond E. Goldstein, and Idan Tuval. "Fidelity of adaptive phototaxis." Proceedings of the National Academy of Sciences 107.25 (2010): 11171-11176.
[15] Drescher, Knut, et al. "Dancing volvox: hydrodynamic bound states of swimming algae." Physical review letters 102.16 (2009): 168101.
[16] Sleigh, M. A. "Mechanisms of flagellar propulsion." Protoplasma 164.1 (1991): 45-53.
[17] Lighthill, James. "Flagellar hydrodynamics." SIAM review 18.2 (1976): 161-230.
[18] Feynman, Richard P. The Feynman Lectures on Physics, Vol. 1 . Massachusetts, USA: Addison-Wesley. 1963. Chapter 46. ISBN 978-0-201-02116-5
[19] https://zh.wikipedia.org/wiki/File:Feynman_ratchet.png
[20] Reimann, Peter. "Brownian motors: noisy transport far from equilibrium." Physics reports 361.2-4 (2002): 57-265.
[21] Rousselet, Juliette, et al. "Directional motion of Brownian particles induced by a periodic asymmetric potential." Nature 370.6489 (1994): 446-447.
[22] Peng, Zheng, and Kiwing To. "Biased Brownian motion in narrow channels with asymmetry and anisotropy." Physical Review E 94.2 (2016): 022902.
[23] Reguera, David, et al. "Entropic splitter for particle separation." Physical Review Letters 108.2 (2012): 020604.
[24] Rubi, J. M., and D. Reguera. "Thermodynamics and stochastic dynamics of transport in confined media." Chemical Physics 375.2-3 (2010): 518-522.
[25] Kosińska, I. D., et al. "Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model." Physical Review E 77.3 (2008): 031131.
[26] Reguera, David, and J. M. Rubi. "Kinetic equations for diffusion in the presence of entropic barriers." Physical Review E 64.6 (2001): 061106.
[27] Zwanzig, Robert. "Diffusion past an entropy barrier." The Journal of Physical Chemistry 96.10 (1992): 3926-3930.
[28] Beverloo, Wim A., Hendrik Antonie Leniger, and J. Van de Velde. "The flow of granular solids through orifices." Chemical engineering science 15.3-4 (1961): 260-269.
[29] Wu, X. L., et al. "Why hour glasses tick." Physical review letters 71.9 (1993): 1363.
[30] Zuriguel, Iker, et al. "Jamming during the discharge of granular matter from a silo." Physical Review E 71.5 (2005): 051303.
[31] To, Kiwing, Pik-Yin Lai, and H. K. Pak. "Jamming of granular flow in a two-dimensional hopper." Physical review letters 86.1 (2001): 71.
[32] Guariguata, Alfredo, et al. "Jamming of particles in a two-dimensional fluid-driven flow." Physical review E 86.6 (2012): 061311.
[33] Lafond, Patrick G., et al. "Orifice jamming of fluid-driven granular flow." Physical Review E 87.4 (2013): 042204.
[34] Roussel, N., Thi Lien Huong Nguyen, and P. Coussot. "General probabilistic approach to the filtration process." Physical review letters 98.11 (2007): 114502.
[35] Marin, Alvaro, et al. "Clogging in constricted suspension flows." Physical Review E 97.2 (2018): 021102.
[36] Ozaki, Masashi, and Yoshihiro Murayama. "Fluctuations and Responses in Stochastic Motions of Volvox Colonies." Current Physical Chemistry 5.1 (2015): 64-72.
[37] Cholkar, Kishore, et al. "Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery." AAPS PharmSciTech 16.3 (2015): 610-622.
[38] https://gitlab.com/nonlineartina/volvox_detection
[39] Sesta, Bianca, et al. "Influence of the Polymer Molecular Weight on the Surfactant− Polymer Interactions: LiPFN− PVP and SDS− PVP Systems." Langmuir 13.25 (1997): 6612-6617.
指導教授 陳志強 審核日期 2022-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明