博碩士論文 106887604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.219.236.62
姓名 Ying Dila(indira negari)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 益生菌活化表皮葡萄球菌透過FFaR2/p-ERK 信號傳導誘導膠原蛋白第I 型的產生
(Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 膠原蛋白第I型是由纖維細胞和細胞外基質所產生,是真皮組織的關鍵結構成分,皮膚老化過程是由內在或外在因素所引起的,例如自然老化或自由基暴露,會大大降低膠原蛋白的表達,從而導致皮膚彈性受阻。我們的研究以聚乙二醇 (PEG) 類似物鯨蠟硬脂基異壬酸酯 (CIN) 當作碳源讓皮膚表皮葡萄球菌 (S.epidermidis) 或丁酸發酵,它們的發酵代謝物可以恢復膠原蛋白。小鼠的纖維細胞和皮膚中的磷酸化細胞外信號調節激酶 (p-ERK) 活化。短鏈脂肪酸 (SCFA) 或游離脂肪酸受體 2 (FFaR2) 在體外和試管內實驗都顯著阻斷了表皮葡萄球菌對 p-ERK 誘導膠原蛋白的I型誘導的益生菌作用。這些結果表明發酵皮膚益生菌代謝產物中的丁酸 (BA) 通過 p-ERK 激活介導 FFaR2 誘導膠原蛋白的合成。我們在此認為以來自 CIN 當碳源可易使皮膚表皮葡萄球菌發酵的代謝物作為恢復真皮細胞外基質 (ECM) 中受損的膠原蛋白,為皮膚提供完整性和彈性。
摘要(英) Collagen type I is a key structural component of dermis tissue and is produced by fibroblasts and the extracellular matrix. The skin aging process, which is caused by intrinsic or extrinsic factors, such as natural aging or free radical exposure, greatly reduces collagen expression, thereby leading to obstructed skin elasticity. We investigated the effective fermentation of Cetearyl isononanoate (CIN), a polyethylene glycol (PEG) analog, as a carbon source with the skin probiotic bacterium Staphylococcus epidermidis (S. epidermidis) or butyrate, as their fermentation metabolites could noticeably restore collagen expression through phosphorylated extracellular signal regulated kinase (p-ERK) activation in mouse fibroblast cells and skin. Both the in vitro and in vivo knockdown of short-chain fatty acid (SCFA) or free fatty acid receptor 2 (FFaR2) considerably blocked the probiotic effect of S. epidermidis on p-ERK-induced collagen type I induction. These results demonstrate that butyric acid (BA) in the metabolites of fermenting skin probiotic bacteria mediates FFaR2 to induce the synthesis of collagen through p-ERK activation. We hereby imply that metabolites from the probiotic S. epidermidis fermentation of CIN as a potential carbon source could restore impaired collagen in the dermal extracellular matrix (ECM), providing integrity and elasticity to skin.
關鍵字(中) ★ 丁酸
★ 膠原蛋白第I型
★ 益生菌
★ 葡萄球菌
關鍵字(英) ★ butyric acid
★ collagen type I
★ probiotic
★ Staphylococcus epidermidis
論文目次 Abstract i
Acknowledgments iii
Publication arising during PhD candidature iv
Table of Contents v
List of Figures vi
List of Tables vi
Explanation of Symbols and Abbreviations vii
Chapter I. Introduction 1
1.1. Background of research study 1
1.2. Probiotic 2
1.3. Normal skin function 2
1.4. Dermal extracellular matrix 3
1.5. Staphylococcus epidermidis and its benefit for skin microbiome 5
1.6. The bacterial pathways of anaerobic SCFA production 7
1.7. Selective fermentation initiator (SFI) 10
1.8. The FFaR2 receptor of SCFA 13
1.9. Research objectives 16
Chapter II. Methods 17
2.1. Bacterial culture 17
2.2. Fermentation of bacteria 17
2.3. GC‐MS analysis 17
2.4. Cell culture 17
2.5. Western-blotting 18
2.6. siRNA-mediated gene silencing of GPR43/FFaR2 19
2.7. Drug treatment 19
2.8. qPCR 19
2.9. Statistical analysis 20
Chapter III. Results 22
3.1. CIN as a selective fermentation initiators (SFIs) for S. Epidermidis 22
3.2. Mixture of CIN and S. epidermidis induces the expression of collagen type I and p-ERK production in mouse skin 24
3.3. Knocking down FFaR2 inhibited BA mediated induction of collagen type I and p-ERK in mouse fibroblast 25
3.4. Knocking down FFaR2 inhibited fermentation metabolite mediated induction of collagen type I and p-ERK in mouse skin 28
Chapter IV. Discussion 32
4.1. General discussion 25
4.2. Limitations and future works 28
Chapter V. Conclusion 38
References…………………………………………………………………………………......... 39
List of Figures
Fig. 1. Schematic overview of the three pathways 9
Fig. 2. S. epidermidis mediates triggers CIN fermentation to produce SCFAs…………………22
Fig. 3. Application of mixture of S. epidermidis and CIN induces collagen type I and p-ERK expression in mouse skin. 24
Fig. 4. Blocking FFaR2 prevents the BA mediated collagen type I and p-ERK induction 26
Fig. 5. Blocking FFAR2 prevents the butyric acid mediated collagen and phosphorylated ERK induction 287
Fig. 6. Blocking FFAR2 prevents the fermentation mediated collagen induction in NIH 3T3 cells 27
Fig. 7. Blocking FFaR2 prevents the fermentation mediated collagen type I and p-ERK induction in mouse skin model. 28
Fig. 8. Blocking FFAR2 prevents the fermentation mediated collagen induction in mouse skin model 29
Fig. 9. Induction of collagen content by application of BA 30
Fig. 10. Blocking FFaR2 mediated collagen induction by BA in mouse skin model 30
Fig. 11. Conclusion model of the mechanism how S. epidermidis produce SCFAs 38

List of Table
Table 1. List of compounds detected by GC-MS tation to produce SCFAs 23
Table 2. List of differences between the three carbon sources 23
參考文獻 1. Quan, C., et al., Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging. J Biomed Sci, 2015. 22: p. 62.
2. Quan, T. and G.J. Fisher, Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology, 2015. 61(5): p. 427-34.
3. Park, H.J., et al., Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol, 2009. 129(4): p. 843-50.
4. Egbert, M., et al., The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci, 2014. 73(1): p. 40-8.
5. Lee, D.J., H. Rosenfeldt, and F. Grinnell, Activation of ERK and p38 MAP Kinases in Human Fibroblasts during Collagen Matrix Contraction. Experimental Cell Research, 2000. 257(1): p. 190-197.
6. Nakatsuji, T., et al., A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv, 2018. 4(2): p. eaao4502.
7. Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci, 2019. 20(18).
8. Tagliari, E., et al., Effect of Probiotic Oral Administration on Skin Wound Healing in Rats. Arq Bras Cir Dig, 2019. 32(3): p. e1457.
9. Bowden, M.G., et al., Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem, 2002. 277(45): p. 43017-23.
10. FAO/WHO, Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. 2001.
11. Cicenia, A., et al., Postbiotic activities of lactobacilli-derived factors. J Clin Gastroenterol, 2014. 48 Suppl 1: p. S18-22.
12. Konishi, H., et al., Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun, 2016. 7: p. 12365.
13. Lebeer, S., et al., Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol, 2018. 49: p. 217-223.
14. Mazmanian, S.K., J.L. Round, and D.L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008. 453(7195): p. 620-5.
15. Quevrain, E., et al., Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn′s disease. Gut, 2016. 65(3): p. 415-425.
16. Sanchez, B., M.C. Urdaci, and A. Margolles, Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology (Reading), 2010. 156(Pt 11): p. 3232-3242.
17. Suez, J. and E. Elinav, The path towards microbiome-based metabolite treatment. Nat Microbiol, 2017. 2: p. 17075.
18. Tsilingiri, K. and M. Rescigno, Postbiotics: what else? Benef Microbes, 2013. 4(1): p. 101-7.
19. Yan, F., et al., Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology, 2007. 132(2): p. 562-75.
20. Bartholome, A.L., et al., Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. JPEN J Parenter Enteral Nutr, 2004. 28(4): p. 210-22; discussion 222-3.
21. Tsukahara, T., et al., Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J Nutr Sci Vitaminol (Tokyo), 2003. 49(6): p. 414-21.
22. Avivi-Green, C., et al., Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: correlation with colon cancer inhibition. Oncol Res, 2000. 12(2): p. 83-95.
23. Kanauchi, O., et al., Germinated barley foodstuffs attenuate colonic mucosal damage and mucosal nuclear factor kappa B activity in a spontaneous colitis model. J Gastroenterol Hepatol, 1999. 14(12): p. 1173-9.
24. Kumar, A., et al., The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation. J Immunol, 2009. 182(1): p. 538-46.
25. Mentschel, J. and R. Claus, Increased butyrate formation in the pig colon by feeding raw potato starch leads to a reduction of colonocyte apoptosis and a shift to the stem cell compartment. Metabolism, 2003. 52(11): p. 1400-5.
26. Venkatraman, A., et al., Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-kappaB. Am J Physiol Gastrointest Liver Physiol, 2003. 285(1): p. G177-84.
27. Yin, L., G. Laevsky, and C. Giardina, Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem, 2001. 276(48): p. 44641-6.
28. Patel, R.M., et al., Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol, 2012. 180(2): p. 626-35.
29. Ouwehand, A.C., et al., Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol, 2005. 16(2): p. 212-7.
30. Di Marzio, L., et al., Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol, 2008. 21(1): p. 137-43.
31. Gueniche, A., et al., Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol, 2010. 19(8): p. e1-8.
32. Gallo, R.L. and T. Nakatsuji, Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol, 2011. 131(10): p. 1974-80.
33. Laborel-Preneron, E., et al., Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS One, 2015. 10(10): p. e0141067.
34. Lai, Y., et al., Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med, 2009. 15(12): p. 1377-82.
35. Naik, S., et al., Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature, 2015. 520(7545): p. 104-8.
36. Naik, S., et al., Compartmentalized control of skin immunity by resident commensals. Science, 2012. 337(6098): p. 1115-9.
37. David, L.A., et al., Host lifestyle affects human microbiota on daily timescales. Genome Biol, 2014. 15(7): p. R89.
38. Earley, Z.M., et al., Burn Injury Alters the Intestinal Microbiome and Increases Gut Permeability and Bacterial Translocation. PLoS One, 2015. 10(7): p. e0129996.
39. Foster, J.A., L. Rinaman, and J.F. Cryan, Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress, 2017. 7: p. 124-136.
40. Grice, E.A., et al., Topographical and temporal diversity of the human skin microbiome. Science, 2009. 324(5931): p. 1190-2.
41. Haak, B.W., M. Levi, and W.J. Wiersinga, Microbiota-targeted therapies on the intensive care unit. Curr Opin Crit Care, 2017. 23(2): p. 167-174.
42. Shimizu, K., et al., Gut microbiota and environment in patients with major burns - a preliminary report. Burns, 2015. 41(3): p. e28-33.
43. Sonnenburg, J.L. and F. Backhed, Diet-microbiota interactions as moderators of human metabolism. Nature, 2016. 535(7610): p. 56-64.
44. Spadoni, I., et al., A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015. 350(6262): p. 830-4.
45. Wang, F., et al., Temporal variations of the ileal microbiota in intestinal ischemia and reperfusion. Shock, 2013. 39(1): p. 96-103.
46. Hillion, M., et al., Comparative study of normal and sensitive skin aerobic bacterial populations. Microbiologyopen, 2013. 2(6): p. 953-61.
47. Gan, B.S., et al., Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis, 2002. 185(9): p. 1369-72.
48. Malic, S., et al., In vitro interaction of chronic wound bacteria in biofilms. J Wound Care, 2011. 20(12): p. 569-70, 572, 574-7.
49. Thomson, C.H., Biofilms: do they affect wound healing? Int Wound J, 2011. 8(1): p. 63-7.
50. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. J Cell Sci, 2010. 123(Pt 24): p. 4195-200.
51. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol, 2010. 341(1): p. 126-40.
52. Jarvelainen, H., et al., Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev, 2009. 61(2): p. 198-223.
53. Kaur, A., et al., Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov, 2019. 9(1): p. 64-81.
54. Gelse, K., E. Poschl, and T. Aigner, Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev, 2003. 55(12): p. 1531-46.
55. Ricard-Blum, S., The collagen family. Cold Spring Harb Perspect Biol, 2011. 3(1): p. a004978.
56. Bella, J. and D.J. Hulmes, Fibrillar Collagens. Subcell Biochem, 2017. 82: p. 457-490.
57. Shin, J.W., et al., Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int J Mol Sci, 2019. 20(9).
58. Page AP and Johnstone IL, The Online Review of C. elegans Biology. Pasadena (CA): WormBook; 2005-2018., 2007
59. Stefanovic, B., New Insights into Regulation of Type I Collagen Gene Expression. Journal of Biological Sciences, 2005. 5: p. 10-20.
60. Oka, S., et al., Serum biomarker analysis of collagen disease patients with acute-onset diffuse interstitial lung disease. BMC Immunol, 2013. 14: p. 9.
61. Jung, Y.R., et al., Anti-wrinkle effect of magnesium lithospermate B from Salvia miltiorrhiza BUNGE: inhibition of MMPs via NF-kB signaling. PLoS One, 2014. 9(8): p. e102689.
62. Dupont, E., J. Gomez, and D. Bilodeau, Beyond UV radiation: a skin under challenge. Int J Cosmet Sci, 2013. 35(3): p. 224-32.
63. Qin, Z., C.A. Worthen, and T. Quan, Cell-size-dependent upregulation of HGF expression in dermal fibroblasts: Impact on human skin connective tissue aging. J Dermatol Sci, 2017. 88(3): p. 289-297.
64. Dos Anjos Oliveira Ferreira, L., et al., Nectandra cuspidata fraction and the isolated polyphenols protect fibroblasts and hairless mice skin from UVB-induced inflammation and oxidative stress. J Photochem Photobiol B, 2020. 205: p. 111824.
65. Krutmann, J., et al., The skin aging exposome. J Dermatol Sci, 2017. 85(3): p. 152-161.
66. Matsuda, M., et al., Suppression of UV-induced wrinkle formation by induction of HSP70 expression in mice. J Invest Dermatol, 2013. 133(4): p. 919-28.
67. Chen, Y.E., M.A. Fischbach, and Y. Belkaid, Skin microbiota-host interactions. Nature, 2018. 553(7689): p. 427-436.
68. Bomar, L., et al., Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio, 2016. 7(1): p. e01725-15.
69. Yu, Y., et al., Changing our microbiome: probiotics in dermatology. Br J Dermatol, 2020. 182(1): p. 39-46.
70. Al-Ghazzewi, F.H. and R.F. Tester, Impact of prebiotics and probiotics on skin health. Benef Microbes, 2014. 5(2): p. 99-107.
71. Krutmann, J., Pre- and probiotics for human skin. Clin Plast Surg, 2012. 39(1): p. 59-64.
72. Nakatsuji, T., et al., Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med, 2017. 9(378).
73. Nakatsuji, T. and R.L. Gallo, Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol, 2012. 132(3 Pt 2): p. 887-95.
74. Zhang, L.J., et al., Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science, 2015. 347(6217): p. 67-71.
75. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346-9.
76. Huang, T.Y., et al., Amplification of probiotic bacteria in the skin microbiome to combat <i>Staphylococcus aureus</i> infection %J Microbiology Australia. 2020. 41(2): p. 61-64.
77. Traisaeng, S., et al., A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins (Basel), 2019. 11(6).
78. Christensen, G.J. and H. Bruggemann, Bacterial skin commensals and their role as host guardians. Benef Microbes, 2014. 5(2): p. 201-15.
79. Knackstedt, R., T. Knackstedt, and J. Gatherwright, The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Exp Dermatol, 2020. 29(1): p. 15-21.
80. Miller, T.L. and M.J. Wolin, Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol, 1996. 62(5): p. 1589-92.
81. Fischbach, M.A. and J.L. Sonnenburg, Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe, 2011. 10(4): p. 336-47.
82. Macfarlane, S. and G.T. Macfarlane, Regulation of short-chain fatty acid production. Proc Nutr Soc, 2003. 62(1): p. 67-72.
83. Macy, J.M., L.G. Ljungdahl, and G. Gottschalk, Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol, 1978. 134(1): p. 84-91.
84. Macy, J.M. and I. Probst, The biology of gastrointestinal bacteroides. Annu Rev Microbiol, 1979. 33: p. 561-94.
85. Pryde, S.E., et al., The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217(2): p. 133-9.
86. Ragsdale, S.W. and E. Pierce, Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta, 2008. 1784(12): p. 1873-98.
87. Duncan, S.H., P. Louis, and H.J. Flint, Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol, 2004. 70(10): p. 5810-7.
88. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett, 2009. 294(1): p. 1-8.
89. Duncan, S.H., et al., Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol, 2002. 68(10): p. 5186-90.
90. Duncan, S.H., et al., Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr, 2004. 91(6): p. 915-23.
91. Venema, K., Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care, 2010. 13(4): p. 432-8.
92. den Besten, G., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013. 54(9): p. 2325-40.
93. el-Khoury, A.E., et al., Similar 24-h pattern and rate of carbon dioxide production, by indirect calorimetry vs. stable isotope dilution, in healthy adults under standardized metabolic conditions. J Nutr, 1994. 124(9): p. 1615-27.
94. Müller, V., Bacterial Fermentation. eLS. John Wiley & Sons Ltd, Chichester, 2008.
95. Hedberg, M., et al., Sugar fermentation in probiotic bacteria--an in vitro study. Oral Microbiol Immunol, 2008. 23(6): p. 482-5.
96. Bewick, S., et al., Trait-based analysis of the human skin microbiome. Microbiome, 2019. 7(1): p. 101.
97. Kao, M.S., et al., The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome. J Microb Biochem Technol, 2016. 8(4): p. 259-265.
98. Yang, A.J., et al., A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. Int J Mol Sci, 2018. 20(1).
99. Fluhr, J.W., R. Darlenski, and C. Surber, Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol, 2008. 159(1): p. 23-34.
100. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 2013. 8(2): p. e55380.
101. Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J, 2017. 12(4).
102. Che, J., et al., DSPE-PEG: a distinctive component in drug delivery system. Curr Pharm Des, 2015. 21(12): p. 1598-605.
103. Fiume, M.M., et al., Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics. Int J Toxicol, 2016. 35(1 Suppl): p. 60S-89S.
104. Knop, K., et al., Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl, 2010. 49(36): p. 6288-308.
105. Zalipsky, S., Chemistry of polyethylene glycol conjugates with biologically active molecules,. Advanced Drug Delivery Reviews, 1995. Volume 16, Issues 2–3: p. 157-182.
106. Shin, H.J., et al., Development and evaluation of topical formulations for a novel skin whitening agent (AP736) using Hansen solubility parameters and PEG-PCL polymers. Int J Pharm, 2018. 552(1-2): p. 251-257.
107. Geng, S., et al., Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology, 2014. 25(27): p. 275103.
108. Torchilin VP, O.V., Papisov MI, et al. , Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta Gen Subj, 1994. 1195(1): p. 11-20.
109. Tran, T.Q., et al., Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes. Polymers (Basel), 2016. 8(9).
110. Hsiao, K.H., C.M. Huang, and Y.H. Lee, Development of Rifampicin-Indocyanine Green-Loaded Perfluorocarbon Nanodroplets for Photo-Chemo-Probiotic Antimicrobial Therapy. Front Pharmacol, 2018. 9: p. 1254.
111. Palmqvist, E. and B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresource Technology,. Bioresource Technology, 2000. Volume 74, Issue 1,: p. Pages 25-33,.
112. Thomsen, M.H., A. Thygesen, and A.B. Thomsen, Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol, 2009. 83(3): p. 447-55.
113. Kumar, M., et al., 5-methyl Furfural Reduces the Production of Malodors by Inhibiting Sodium l-lactate Fermentation of Staphylococcus epidermidis: Implication for Deodorants Targeting the Fermenting Skin Microbiome. Microorganisms, 2019. 7(8).
114. Vassilev, I., et al., Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. ACS Sustainable Chemistry & Engineering, 2018. 6(7): p. 8485-8493.
115. Le Bars, D. and M. Yvon, Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. J Appl Microbiol, 2008. 104(1): p. 171-7.
116. A.D. McNaught and A. Wilkinson, International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology: IUPAC Recommendations. 1997.
117. Offermanns, S., Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol, 2014. 54: p. 407-34.
118. Falomir-Lockhart, L.J., et al., Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci, 2019. 13: p. 162.
119. Milligan, G., et al., Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev, 2017. 117(1): p. 67-110.
120. Ichimura, A., et al., Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol, 2014. 5: p. 236.
121. Kimura, I., et al., Free Fatty Acid Receptors in Health and Disease. Physiol Rev, 2020. 100(1): p. 171-210.
122. Brown, A.J., et al., The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem, 2003. 278(13): p. 11312-9.
123. Lee, T., et al., Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol, 2008. 74(6): p. 1599-609.
124. Hong, Y.H., et al., Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology, 2005. 146(12): p. 5092-9.
125. Ge, H., et al., Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology, 2008. 149(9): p. 4519-26.
126. Kimura, I., et al., The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun, 2013. 4: p. 1829.
127. Schmidt, J., et al., Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem, 2011. 286(12): p. 10628-40.
128. Hudson, B.D., et al., Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem, 2013. 288(24): p. 17296-312.
129. Maslowski, K.M., et al., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009. 461(7268): p. 1282-6.
130. Tolhurst, G., et al., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012. 61(2): p. 364-71.
131. Traisaeng, S., et al., Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Sci Rep, 2020. 10(1): p. 7928.
132. Keshari, S., et al., Skin Cutibacterium acnes Mediates Fermentation to Suppress the Calcium Phosphate-Induced Itching: A Butyric Acid Derivative with Potential for Uremic Pruritus. J Clin Med, 2020. 9(2).
133. Kaur, N., et al., Intestinal dysbiosis in inflammatory bowel disease. Gut Microbes, 2011. 2(4): p. 211-6.
134. Keshari, S., et al., Skin Cutibacterium acnes Mediates Fermentation to Suppress the Calcium Phosphate-Induced Itching: A Butyric Acid Derivative with Potential for Uremic Pruritus. J Clin Med, 2020. 9(2): p. 312.
135. Pizzonero, M., et al., Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem, 2014. 57(23): p. 10044-57.
136. Nolan, T., R.E. Hands, and S.A. Bustin, Quantification of mRNA using real-time RT-PCR. Nat Protoc, 2006. 1(3): p. 1559-82.
137. Schmittgen, T.D. and K.J. Livak, Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008. 3(6): p. 1101-8.
138. Marito, S., S. Keshari, and C.M. Huang, PEG-8 Laurate Fermentation of Staphylococcus epidermidis Reduces the Required Dose of Clindamycin Against Cutibacterium acnes. Int J Mol Sci, 2020. 21(14).
139. Stipcevic, T., J. Piljac, and D. Vanden Berghe, Effect of different flavonoids on collagen synthesis in human fibroblasts. Plant Foods Hum Nutr, 2006. 61(1): p. 29-34.
140. Yang, Y., et al., Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway. PLoS One, 2017. 12(6): p. e0179614.
141. Karna, E., W. Miltyk, and J.A. Pałka, Butyrate-induced collagen biosynthesis in cultured fibroblasts is independent on α2β1 integrin signalling and undergoes through IGF-I receptor cascade. Molecular and Cellular Biochemistry, 2006. 286(1): p. 147.
142. Suto, M., et al., A Potato Peel Extract Stimulates Type I Collagen Synthesis via Akt and ERK Signaling in Normal Human Dermal Fibroblasts. Biol Pharm Bull, 2019. 42(9): p. 1510-1516.
143. Bindels, L.B., E.M. Dewulf, and N.M. Delzenne, GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci, 2013. 34(4): p. 226-32.
144. Bjorkman, L., et al., The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol Cell Biol, 2016. 36(20): p. 2583-95.
145. Curaj, A., et al., Neutrophils Modulate Fibroblast Function and Promote Healing and Scar Formation after Murine Myocardial Infarction. Int J Mol Sci, 2020. 21(10).
146. El-Domyati, M., et al., Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol, 2002. 11(5): p. 398-405.
147. Quan, T., et al., Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol, 2010. 130(2): p. 415-24.
148. Yasui, T., et al., In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser. J Biomed Opt, 2013. 18(3): p. 31108.
149. Garcia JM, M.G., Kargi AY, Growth Hormone in Aging. 2019.
150. Moskalev, A., Is anti-ageing drug discovery becoming a reality? Expert Opinion on Drug Discovery, 2020. 15(2): p. 135-138.
151. Lam, T.H., et al., Understanding the microbial basis of body odor in pre-pubescent children and teenagers. Microbiome, 2018. 6(1): p. 213.
152. Bawdon, D., et al., Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiol Lett, 2015. 362(16).
153. Callewaert, C., et al., Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. PLoS One, 2013. 8(8): p. e70538.
154. Vardar, G., et al., Synthesis of glucose oxidase-PEG aldehyde conjugates and improvement of enzymatic stability. Artif Cells Nanomed Biotechnol, 2018. 46(4): p. 788-794.
155. Garland, S.H., Short chain fatty acids may elicit an innate immune response from preadipocytes: a potential link between bacterial infection and inflammatory diseases. Med Hypotheses, 2011. 76(6): p. 881-3.
156. Shah, V.P., et al., Bioequivalence of topical dermatological dosage forms--methods of evaluation of bioequivalence. Pharm Res, 1998. 15(2): p. 167-71.
157. Raney, S.G., et al., Pharmacokinetics-Based Approaches for Bioequivalence Evaluation of Topical Dermatological Drug Products. Clin Pharmacokinet, 2015. 54(11): p. 1095-106.
158. Baumann, A., et al., Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? Drug Discov Today, 2014. 19(10): p. 1623-31.
159. Li, Y., et al., Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B, 2019. 9(6): p. 1113-1144.
160. Haines, J.R. and M. Alexander, Microbial degradation of polyethylene glycols. Appl Microbiol, 1975. 29(5): p. 621-5.
161. Wolever, T.M., et al., Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism, 1997. 46(7): p. 805-11.
162. Daniel, P., et al., Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clin Chim Acta, 1989. 181(3): p. 255-63.
163. Kober, M.-M. and W.P. Bowe, The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women′s Dermatology, 2015. 1(2): p. 85-89.
164. Karna, E., S. Trojan, and J.A. Palka, The mechanism of butyrate-induced collagen biosynthesis in cultured fibroblasts. Acta Pol Pharm, 2009. 66(2): p. 129-34.
165. Wang, Y., et al., A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation. J Invest Dermatol, 2017. 137(1): p. 46-56.
166. Lim, I.J., et al., Synchronous activation of ERK and phosphatidylinositol 3-kinase pathways is required for collagen and extracellular matrix production in keloids. J Biol Chem, 2003. 278(42): p. 40851-8.
167. Lee, D.J., H. Rosenfeldt, and F. Grinnell, Activation of ERK and p38 MAP kinases in human fibroblasts during collagen matrix contraction. Exp Cell Res, 2000. 257(1): p. 190-7.
168. Hatanaka, H., et al., Identification of transforming activity of free fatty acid receptor 2 by retroviral expression screening. Cancer Sci, 2010. 101(1): p. 54-9.
169. Mohammad, S., Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis. Curr Drug Targets, 2015. 16(7): p. 771-5.
170. Karaki, S., et al., Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res, 2006. 324(3): p. 353-60.
171. Pirozzi, C., et al., Butyrate Modulates Inflammation in Chondrocytes via GPR43 Receptor. Cell Physiol Biochem, 2018. 51(1): p. 228-243.
172. Yang, Y., et al., Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway. PLOS ONE, 2017. 12(6): p. e0179614.
173. Pham, M.T., et al., Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet. Sci Rep, 2020. 10(1): p. 21916.
174. Pham, M.T., et al., Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. J Nutr Biochem, 2021. 98: p. 108821.
175. Kao, M.S., et al., Colonization of nasal cavities by Staphylococcus epidermidis mitigates SARS-CoV-2 nucleocapsid phosphoprotein-induced interleukin (IL)-6 in the lung. Microb Biotechnol, 2022.
指導教授 Wang Sunchong Lee Yuhsiang Chen Chingyun Huang Weihsing Hsieh Mingfang Hwang Tzannshun(Sun-Chong Wang Yu-Hsiang Lee Ching-Yun Chen Wei-Hsing Huang Ming-Fang Hsieh Tzann-Shun Hwang) 審核日期 2022-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明