博碩士論文 105886002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.219.22.169
姓名 高銘杉(Ming-Shan Kao)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 藉由研究皮膚微生物組體為人類疾病之治療與檢測 提供創新概念
(Novel concepts for the treatment and detection of human diseases through the study of skin microbiome)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 微生物精準編輯:藉以使用選擇性發酵元PEG來對抗耐甲氧西林金黄色葡萄球菌
近來創建的聯合微生物組體計畫目的為了解微生物如何在彼此與人類之間相互作用,當致病菌金黃色葡萄球菌感染皮膚時,細菌與皮膚之間的交互作用將立馬產生,前人研究數據顯示,皮膚上的共生細菌可以藉由發酵作用來對抗一種耐甲氧西林金黄色葡萄球菌(MRSA, USA300)的生長,通過小規模的固態培養基實驗發現聚乙二醇二甲基丙烯酸酯(PEG-DMA)可作為選擇性發酵元只給予特定益生菌-皮膚共生之表皮葡萄球菌做使用,在其發酵中,至少五種短脂肪鍊酸(乙酸、丁酸以及丙酸)產生以對抗USA300,除此之外,包埋表皮葡萄球菌的PEG-DMA水膠還能有效的降低USA300的菌落生成,PEG-DMA及其衍生物具潛力成為新穎的生醫材料、訂製出特定微生物組體以對抗外來病原體。

鼻腔定植表皮葡萄球菌可以減輕SARS-CoV-2核酸殼蛋白在肺部中所引發的白細胞介素-6
嚴重急性呼吸系統綜合症冠狀病毒2(SARS-CoV-2)的感染可以引發過度的白細胞介素-6 (IL-6),導致無數的生物效應,其中包括會因免疫風暴而導致多重器官衰竭的嚴重冠狀病毒疾病2019(COVID-19),藉由小鼠模型,本研究證實鼻腔接種SARS-CoV-2的核酸殼蛋白(NPP)會增加白細胞介素-6在支氣管中的含量,給予表皮葡萄球菌液體椰油醇-辛酸/癸酸酯(LCC)可顯著降低NPP引發的IL-6,除此之外,表皮葡萄球菌藉由發酵LCC產生的電力與丁酸可以用來增進細菌的生長和激活游離脂肪酸受體2(Ffar2),若抑制Ffar2後,則會阻礙表皮葡萄球菌加入LCC以減少NPP誘導IL-6的作用,總而言之,本研究結果支持在改善SARS-CoV-2呼吸道感染所導致的免疫風暴中,表皮葡萄球菌扮演著第一道防線的角色。

受表皮葡萄球菌定植之小鼠鼻腔電訊號的信息相似性分析
人類微生物組體中已有許多細菌被認定為電力活性菌,從活體實驗中獲取複雜的電訊號並加以分析是需仰賴於特徵提取方法,將從人體中分離出的表皮葡萄球菌K1菌株事前定植於小鼠鼻腔中給予液體椰油醇-辛酸/癸酸酯(LCC)後產生電力,以給予生理食鹽水的組別所產生的電訊號為基準,進而發現給予LCC組別的電壓變化較高,其中兩組別的電訊號圖可以被信息相似性分析法明顯的分開,當表皮葡萄球菌K1菌株受添加玫瑰黃色素前處理後,其定植於小鼠鼻腔並給予LCC的電訊號圖則會回到與基準植高度相似,具上述所綜,共生電力活性菌影響著鼻腔電訊號,且所使用的信息相似性分析法是可以用以分析、定量出電訊號之相似性與規律性。

共生微生物在近年來已被證實不論是在人體表面、腸胃道、免疫系統、甚至是在心智上,都影響且代表著人類,藉由研究共生微生物之間是如何交互影響可幫助我們在微生物失衡所導致的疾病當中找到更有效的治療方法,檢測共生微生物之組成更可了解其引發人類疾病之成因、甚至可以其組成代表人類之健康狀態,在本篇論文中,將藉由研究皮膚微生物組體,提出創新的治療與檢測方法來針對人類疾病,並且深入討論其未來之展望與應用。
摘要(英) Microbiome Precision Editing: Using PEG as a Selective Fermentation Initiator Against Methicillin-resistant Staphylococcus aureus
Recent creation of a Unified Microbiome Initiative (UMI) has the aim of understanding how microbes interact with each other and with us. When pathogenic Staphylococcus aureus (S. aureus) infects the skin, the interplay between S. aureus and skin commensal bacteria occurs. Our previous data revealed that skin commensal bacteria can mediate fermentation against the growth of USA300, a community-acquired methicillin-resistant S. aureus MRSA (CA-MRSA). By using a fermentation process with solid media on a small scale, we define poly(ethylene glycol) dimethacrylate (PEG-DMA) as a selective fermentation initiator (SFI) which can specifically intensify the probiotic ability of skin commensal Staphylococcus epidermidis (S. epidermidis) bacteria. At least five SCFAs including acetic, butyric and propionic acids with anti-USA300 activities were produced by PEG-DMA fermentation of S. epidermidis. Furthermore, the S. epidermidis-laden PEG-DMA hydrogels effectively decolonized USA300 in skin wounds in mice. The PEG-DMA and its derivatives may become novel biomaterials to specifically tailor the human skin microbiome against invading pathogens.

Colonization of Nasal Cavities by Staphylococcus epidermidis Mitigates SARS-CoV-2 Nucleocapsid Phosphoprotein-induced Interleukin (IL)-6 in the Lung
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can trigger excessive interleukin (IL)-6 signaling, leading to a myriad of biological effects including a cytokine storm that contributes to multiple organ failure in severe coronavirus disease 2019 (COVID-19). Using a mouse model, we demonstrated that nasal inoculation of nucleocapsid phosphoprotein (NPP) of SARS-CoV-2 increased IL-6 content in bronchoalveolar lavage fluid (BALF). Nasal administration of liquid coco-caprylate/caprate (LCC) onto Staphylococcus epidermidis (S. epidermidis)-colonized mice significantly attenuated NPP-induced IL-6. Furthermore, S. epidermidis mediated LCC fermentation to generate electricity and butyric acid that promoted bacterial colonization and activated free fatty acid receptor 2 (Ffar2), respectively. Inhibition of Ffar2 impeded the effect of S. epidermidis plus LCC on the reduction of NPP-induced IL-6. Collectively, these results suggest that nasal S. epidermidis is part of the first line of defense in ameliorating a cytokine storm induced by airway infection of SARS-CoV-2.

Information-based similarity analysis of electric signals of nasally pre-colonized Staphylococcus epidermidis in mice
Many bacteria in the human microbiome have been identified as electrogenic microorganisms. Characterization of bacterial electricity from complex electric signals in vivo relies on a feature extraction method. A Staphylococcus epidermidis (S. epidermidis) K1 strain isolated from human was pre-colonized on the nasal cavities of mice and triggered with liquid coco-caprylate/caprate (LCC) to elicit electricity. Intranasal administration of phosphate buffered saline (PBS) was used to establish a base pattern of electric signals. Compared to PBS, LCC induced a higher level of voltage changes in S. epidermidis K1 colonized nasal cavities. The patterns of electric signals elicited by PBS or LCC were distinctly separated by information-based similarity (IBS) analysis. Treatment of S. epidermidis K1 with roseoflavin significantly diminished the electricity production of S. epidermidis K1 and exhibited electric signals with high similarity to a base pattern. Collectively, our results indicated that commensal electrogenic bacteria contributed to nasal electric signals and highlighted that IBS analysis was a quantitative method to analyze the similarity and regularity of bacteria-involved electric signals.

In recent years, microbiome has been shown to affect and represent the human body, whether on the human surface, in the gastrointestinal tract, in the immune system, or even in the mind. By studying the interaction between microbiome, the more effective treatments for diseases caused by microbial imbalance can be found. The causes of several human diseases can be understood through checking the composition of microbiome. It even represents the health status of human. In this dissertation, I will propose innovative therapeutic and detection methods to address human diseases by studying the skin microbiome and discuss the future perspectives and applications.
關鍵字(中) ★ 微生物組體
★ 選擇性發酵
★ 新冠肺炎
★ 電訊號
★ 表皮葡萄球菌
關鍵字(英) ★ microbiome
★ selective fermentation
★ COVID-19
★ electric signals
★ S. epidermidis
論文目次 Chinese Abstract i
Abstract iii
Acknowledgement vi
Table of Contents ix
List of Figures xii
List of Table xiv
Chapter 1. Introduction 1
1.1. Human microbiome 1
1.2. Interaction between microorganism and human skin 1
1.3. Short-chain fatty acids (SCFAs) 2
1.4. Coronavirus disease 2019 (COVID-19) 3
1.5. Biomedical signals 3
1.6. Dissertation declaration 4
Chapter 2. Microbiome Precision Editing: Using PEG as a Selective Fermentation Initiator Against Methicillin-resistant Staphylococcus aureus 5
2.1. Introduction 5
2.2. Materials and Methods 8
2.2.1. Ethics statement 8
2.2.2. Bacterial culture 8
2.2.3. Bacterial fermentation in solid media 8
2.2.4. Anti-USA300 overlay assays 9
2.2.5. GC-MS analysis 9
2.2.6. The minimum bactericidal concentration (MBC) assays 10
2.2.7. Fabrication of S. epidermidis-laden PEG-DMA hydrogels 10
2.2.8. In vivo anti-USA300 activity of probiotic PEG-DMA hydrogels 10
2.2.9. Bacterial counts in USA300-infected skin 11
2.2.10. Statistical analysis 11
2.3. Results 11
2.3.1. PEG-DMA as a SFI for S. epidermidis 11
2.3.2. Suppression of USA300 growth by PEG-DMA fermentation of S. epidermidis 13
2.3.3. Identification of SCFAs produced by PEG-DMA fermentation by GC-MS 15
2.3.4. Anti-USA300 activities of SCFAs 17
2.3.5. Inhibition of USA300 growth by S. epidermidis-laden PEG-DMA hydrogels 19
2.4. Discussion 21
Chapter 3. Colonization of Nasal Cavities by Staphylococcus epidermidis Mitigates SARS-CoV-2 Nucleocapsid Phosphoprotein-induced Interleukin (IL)-6 in the Lung 26
3.1. Introduction 26
3.2. Materials and methods 28
3.2.1. Ethics statement 28
3.2.2. Sources of nasal swabs 28
3.2.3. NPP cloning, expression and purification 29
3.2.4. Nasal inoculation and IL-6 detection 29
3.2.5. Bacterial electricity detection 29
3.2.6. Isolation of nasal septum and detection of butyric acid by HPLC 30
3.2.7. Colonization of S. epidermidis on mouse nasal cavities 31
3.2.8. Inoculation of NPP into S. epidermidis-colonized mice and inhibition of Ffar2 32
3.2.9. Statistical analysis 32
3.3. Results 32
3.3.1. Nasal inoculation of NPP of SARS-CoV-2 in mice induces an increase in IL-6 in the lung 32
3.3.2. LCC fermentation mediates electricity production that is essential for nasal colonization of S. epidermidis 34
3.3.3. Produced of butyric acid by S. epidermidis-colonized nasal septum 37
3.3.4. S. epidermidis plus LCC attenuates NPP-induced IL-6 production in BALF via activation of free fatty acid receptor 2 (Ffar2) 40
3.4. Discussion 49
Chapter 4. Information-based similarity analysis of electric signals of nasally pre-colonized Staphylococcus epidermidis in mice 56
4.1. Introduction 56
4.2. Materials and methods 58
4.2.1. Ethics statement 58
4.2.2. S. epidermidis colonization on mouse nasal cavities 58
4.2.3. Detection of electricity on S. epidermidis-colonized mouse nasal cavities 58
4.2.4. Inhibition of bacteria-produced electricity 59
4.2.5. IBS analysis 60
4.2.6. Calculation of IBS values 61
4.3. Results 61
4.3.1. Formation of an electrical circuit for detection of electric signals in S. epidermidis K1-colonized mice 61
4.3.2. Dissimilar electric signals analyzed by IBS 63
4.3.3. Inhibition of S. epidermidis-elicited electric signals by roseoflavin 68
4.3.4. Contribution of S. epidermidis to electric signals detected in the upper respiratory tract 70
4.4. Discussion 73
Chapter 5 Conclusion 76
5.1 Key findings and significance 76
5.1.1 Chapter 2 | PEG-DMA hydrogels 76
5.1.2 Chapter 3 | First line of defense in nasal cavity 76
5.1.3 Chapter 4 | Analyzation of biomedical signals 77
5.2 Future study 78
Reference 80
Appendix 1: List of Publication 91
Appendix 2: Published Articles and Manuscript 92
參考文獻 Reference
1. Turnbaugh, P.J., et al., The human microbiome project. Nature, 2007. 449(7164): p. 804-10.
2. Sehrawat, N., et al., Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Semin Cancer Biol, 2021. 70: p. 24-36.
3. Celiberto, L.S., et al., Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology, 2018. 155(1): p. 36-52.
4. Dima, E., et al., The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med, 2019. 157: p. 1-6.
5. Gomaa, E.Z., Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020. 113(12): p. 2019-2040.
6. Manor, O., et al., Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun, 2020. 11(1): p. 5206.
7. King, C.H., et al., Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One, 2019. 14(9): p. e0206484.
8. Appanna, V.D., Human Microbes - The Power Within. 2018, Springer Singapore.
9. Stassen, M.J.J., et al., Coumarin Communication Along the Microbiome-Root-Shoot Axis. Trends Plant Sci, 2021. 26(2): p. 169-183.
10. Grice, E.A. and J.A. Segre, The skin microbiome. Nat Rev Microbiol, 2011. 9(4): p. 244-53.
11. Erny, D., et al., Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015. 18(7): p. 965-77.
12. van de Wouw, M., et al., Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol, 2018. 596(20): p. 4923-4944.
13. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol, 2014. 98(1): p. 411-24.
14. Wang, Y., et al., A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int J Mol Sci, 2016. 17(11).
15. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. 579(7798): p. 270-273.
16. Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020. 395(10224): p. 565-574.
17. Li, F., et al., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005. 309(5742): p. 1864-8.
18. Li, W., et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003. 426(6965): p. 450-4.
19. Belete, T.M., A review on Promising vaccine development progress for COVID-19 disease. Vacunas, 2020. 21(2): p. 121-128.
20. Yang, J., et al., A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source. Sensors (Basel), 2015. 15(8): p. 19618-32.
21. Biteen, J.S., et al., Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016. 10(1): p. 6-37.
22. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346-9.
23. Lai, Y., et al., Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med, 2009. 15(12): p. 1377-82.
24. Otto, M., Staphylococcus epidermidis--the ′accidental′ pathogen. Nat Rev Microbiol, 2009. 7(8): p. 555-67.
25. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 2013. 8(2): p. e55380.
26. Barbirato, F., D. Chedaille, and A. Bories, Propionic acid fermentation from glycerol: Comparison with conventional substrates. Applied Microbiology and Biotechnology, 1997. 47(4): p. 441-446.
27. Robbins, G.B. and K.H. Lewis, Fermentation of Sugar Acids by Bacteria. J Bacteriol, 1940. 39(4): p. 399-404.
28. Safonova, T.B., et al., [Importance of carbohydrate tests for interspecies differentiation of staphylococci]. Zh Mikrobiol Epidemiol Immunobiol, 1978(9): p. 98-101.
29. Pincus, N.B., et al., Strain Specific Phage Treatment for Staphylococcus aureus Infection Is Influenced by Host Immunity and Site of Infection. PLoS One, 2015. 10(4): p. e0124280.
30. Haq, I.U., et al., Bacteriophages and their implications on future biotechnology: a review. Virology Journal, 2012. 9.
31. Brabban, A.D., E. Hite, and T.R. Callaway, Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis, 2005. 2(4): p. 287-303.
32. O′Shea, Y.A. and E.F. Boyd, Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett, 2002. 214(2): p. 153-7.
33. Maiques, E., et al., Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol, 2007. 189(15): p. 5608-16.
34. Clark, J.R. and J.B. March, Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol, 2006. 24(5): p. 212-8.
35. Che, J., et al., DSPE-PEG: a distinctive component in drug delivery system. Curr Pharm Des, 2015. 21(12): p. 1598-605.
36. Dusselier, M., M. Mascal, and B.F. Sels, Top chemical opportunities from carbohydrate biomass: a chemist′s view of the Biorefinery. Top Curr Chem, 2014. 353: p. 1-40.
37. Frings, J., E. Schramm, and B. Schink, Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. Appl Environ Microbiol, 1992. 58(7): p. 2164-7.
38. Wang, Y., et al., Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Benef Microbes, 2014. 5(2): p. 161-8.
39. Killion, J.A., et al., Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application. J Mech Behav Biomed Mater, 2011. 4(7): p. 1219-27.
40. Zhang, K., et al., In situ formation of blends by photopolymerization of poly(ethylene glycol) dimethacrylate and polylactide. Biomacromolecules, 2005. 6(3): p. 1615-22.
41. Lin-Gibson, S., et al., Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules, 2004. 5(4): p. 1280-7.
42. Elisseeff, J., et al., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res, 2000. 51(2): p. 164-71.
43. Schink, B. and M. Stieb, Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol, 1983. 45(6): p. 1905-13.
44. Wagener, S. and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl Environ Microbiol, 1988. 54(2): p. 561-5.
45. Dwyer, D.F. and J.M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Appl Environ Microbiol, 1986. 52(4): p. 852-6.
46. Haines, J.R. and M. Alexander, Microbial degradation of polyethylene glycols. Appl Microbiol, 1975. 29(5): p. 621-5.
47. Burtenshaw, J.M., The mechanism of self-disinfection of the human skin and its appendages. J Hyg (Lond), 1942. 42(2): p. 184-210.
48. Hobdy, E. and J. Murren, AN-9 (Titan). Curr Opin Investig Drugs, 2004. 5(6): p. 628-34.
49. Garland, S.H., Short chain fatty acids may elicit an innate immune response from preadipocytes: A potential link between bacterial infection and inflammatory diseases. Medical Hypotheses, 2011. 76(6): p. 881-883.
50. Qian, Y.J., Y.S. Jung, and X.B. Chen, Delta Np63, a Target of DEC1 and Histone Deacetylase 2, Modulates the Efficacy of Histone Deacetylase Inhibitors in Growth Suppression and Keratinocyte Differentiation. Journal of Biological Chemistry, 2011. 286(14).
51. Kim, J., Review of the innate immune response in acne vulgaris: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 2005. 211(3): p. 193-198.
52. Huang, N., et al., Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine, 1997. 9(1): p. 27-36.
53. Ochoa-Zarzosa, A., et al., Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes. Microbial Pathogenesis, 2009. 47(1): p. 1-7.
54. Schauber, J., et al., Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D3. J Invest Dermatol, 2008. 128(4): p. 816-24.
55. Brogdon, J.L., et al., Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood, 2007. 109(3): p. 1123-30.
56. Saito, T., et al., Immune tolerance induced by polyethylene glycol-conjugate of protein antigen: clonal deletion of antigen-specific Th-cells in the thymus. J Biomater Sci Polym Ed, 2000. 11(6): p. 647-56.
57. Goetghebeur, M., et al., Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can J Infect Dis Med Microbiol, 2007. 18(1): p. 27-34.
58. Hurley, M.N., D.L. Forrester, and A.R. Smyth, Antibiotic adjuvant therapy for pulmonary infection in cystic fibrosis. Cochrane Database Syst Rev, 2013. 6: p. CD008037.
59. McGonagle, D., et al., The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev, 2020. 19(6): p. 102537.
60. Chen, G., et al., Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020. 130(5): p. 2620-2629.
61. Qin, C., et al., Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis, 2020. 71(15): p. 762-768.
62. Tan, M., et al., Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology, 2020. 160(3): p. 261-268.
63. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 395(10223): p. 497-506.
64. Tang, Y., et al., Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol, 2020. 11: p. 1708.
65. Zhang, X., et al., Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology, 2007. 365(2): p. 324-35.
66. Chen, H.W., et al., Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Sci Rep, 2016. 6: p. 27870.
67. Kim, H.J., et al., Nasal commensal Staphylococcus epidermidis enhances interferon-lambda-dependent immunity against influenza virus. Microbiome, 2019. 7(1): p. 80.
68. Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci, 2019. 20(18).
69. Traisaeng, S., et al., A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins (Basel), 2019. 11(6).
70. Balasubramaniam, A., et al., Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B. Microorganisms, 2020. 8(7).
71. Sacco, N.J., M.C. Bonetto, and E. Corton, Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4. PLoS One, 2017. 12(2): p. e0169955.
72. Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J, 2017. 12(4).
73. Lu, J., et al., Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine, 2020. 59: p. 102960.
74. Sohn, M., et al., Effect of emollients on UV filter absorbance and sunscreen efficiency. J Photochem Photobiol B, 2020. 205: p. 111818.
75. Beigel, J.H., et al., Remdesivir for the Treatment of Covid-19 - Preliminary Report. N Engl J Med, 2020.
76. Tomazini, B.M., et al., COVID-19-associated ARDS treated with DEXamethasone (CoDEX): Study design and rationale for a randomized trial. medRxiv, 2020: p. 2020.06.24.20139303.
77. Antunes, M.B., et al., Murine nasal septa for respiratory epithelial air-liquid interface cultures. Biotechniques, 2007. 43(2): p. 195-6, 198, 200 passim.
78. Wang, W., et al., Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res, 2007. 128(1-2): p. 1-8.
79. Light, S.H., et al., A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018. 562(7725): p. 140-144.
80. Sebastian, M., et al., The Biosynthesis of Flavin Cofactors in Listeria monocytogenes. J Mol Biol, 2019. 431(15): p. 2762-2776.
81. Mansjo, M. and J. Johansson, The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol, 2011. 8(4): p. 674-80.
82. Miroux, B. and J.E. Walker, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol, 1996. 260(3): p. 289-98.
83. Patil, S.A., C. Hägerhäll, and L. Gorton, Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews, 2012. 4(2): p. 159-192.
84. Sarjit, A., S.M. Tan, and G.A. Dykes, Surface modification of materials to encourage beneficial biofilm formation. AIMS Bioeng, 2015. 2(4): p. 404-422.
85. Finke, N., V. Vandieken, and B.B. Jorgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol, 2007. 59(1): p. 10-22.
86. Keshari, S., et al., Skin Cutibacterium acnes Mediates Fermentation to Suppress the Calcium Phosphate-Induced Itching: A Butyric Acid Derivative with Potential for Uremic Pruritus. J Clin Med, 2020. 9(2).
87. Wang, G., et al., The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza A Virus Entry. J Virol, 2020. 94(2).
88. Solis-Garcia Del Pozo, J., et al., A systematic review on the efficacy and safety of IL-6 modulatory drugs in the treatment of COVID-19 patients. Eur Rev Med Pharmacol Sci, 2020. 24(13): p. 7475-7484.
89. Fiume, M.M., et al., Safety Assessment of Alkyl Esters as Used in Cosmetics. Int J Toxicol, 2015. 34(2 Suppl): p. 5S-69S.
90. Huang, W.C., et al., Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci, 2014. 73(3): p. 232-40.
91. Zhang, X., et al., Caprylic acid suppresses inflammation via TLR4/NF-kappaB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond), 2019. 16: p. 40.
92. Liu, J., et al., Sodium Butyrate Inhibits the Inflammation of Lipopolysaccharide-Induced Acute Lung Injury in Mice by Regulating the Toll-Like Receptor 4/Nuclear Factor kappaB Signaling Pathway. J Agric Food Chem, 2019. 67(6): p. 1674-1682.
93. Namour, F., et al., Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. Br J Clin Pharmacol, 2016. 82(1): p. 139-48.
94. Huang, W., et al., Short-Chain Fatty Acids Ameliorate Diabetic Nephropathy via GPR43-Mediated Inhibition of Oxidative Stress and NF-kappaB Signaling. Oxid Med Cell Longev, 2020. 2020: p. 4074832.
95. Gilzad-Kohan, H. and F. Jamali, Anti-Inflammatory Properties of Drugs Used to Control COVID-19 and their Effects on the Renin-Angiotensin System and Angiotensin-Converting Enzyme-2. J Pharm Pharm Sci, 2020. 23: p. 259-277.
96. Marsili, E., et al., Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3968-73.
97. Lee, E.R., K.F. Blount, and R.R. Breaker, Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol, 2009. 6(2): p. 187-94.
98. Luo, Q., et al., Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl Environ Microbiol, 2005. 71(1): p. 423-7.
99. Gomez-Carretero, S., et al., Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. NPJ Biofilms Microbiomes, 2017. 3: p. 19.
100. van der Stel, A.X., et al., Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni. Mol Microbiol, 2017. 105(4): p. 637-651.
101. MacLea, K.S. and A.M. Trachtenberg, Complete Genome Sequence of Staphylococcus epidermidis ATCC 12228 Chromosome and Plasmids, Generated by Long-Read Sequencing. Genome Announc, 2017. 5(36).
102. Nardelli, C., et al., Nasopharyngeal Microbiome Signature in COVID-19 Positive Patients: Can We Definitively Get a Role to Fusobacterium periodonticum? Front Cell Infect Microbiol, 2021. 11: p. 625581.
103. Moore, S.C., et al., Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism. Viruses, 2020. 12(10).
104. Morniroli, D., et al., Human Sialome and Coronavirus Disease-2019 (COVID-19) Pandemic: An Understated Correlation? Front Immunol, 2020. 11: p. 1480.
105. Gallo, O., et al., The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol, 2021. 14(2): p. 305-316.
106. Jeong Yeon Ji, et al., The nasal symbiont Staphylococcus epidermidis shapes the cellular environment to decrease expression of SARS-CoV-2 entry factors in nasal epithelium. iScience, 2021.
107. Cao, X., COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol, 2020. 20(5): p. 269-270.
108. Nilanjan Dey, et al., Biomedical Signals: Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning. Acoustic Sensors for Biomedical Applications 2019: p. 7-20.
109. Patrizia Vizza and G. Tradigo, On the analysis of biomedical signals for disease classification. Association for Computing Machinery, 2018. 8(3): p. 7-10.
110. S, S., K. R, and S. P, Quantification of sweat urea in diabetes using electro-optical technique. Physiol Meas, 2021. 42(9).
111. Faghih, R.T., et al., Characterization of fear conditioning and fear extinction by analysis of electrodermal activity. Annu Int Conf IEEE Eng Med Biol Soc, 2015. 2015: p. 7814-8.
112. Goldman, M.D., et al., Electrical circuit models of the human respiratory system reflect small airway impairment measured by impulse oscillation (IOS). Annu Int Conf IEEE Eng Med Biol Soc, 2010. 2010: p. 2467-72.
113. Ursell, L.K., et al., Defining the human microbiome. Nutr Rev, 2012. 70 Suppl 1: p. S38-44.
114. Battson, M.L., et al., Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. Am J Physiol Heart Circ Physiol, 2019. 317(6): p. H1210-H1220.
115. Olivier Schaetzle, Frédéric Barrière, and K. Baronianb, Bacteria and yeasts as catalysts in microbial fuelcells: electron transfer from micro-organisms to electrodes for green electricity. Energy & Environmental Science, 2008(6).
116. Kato, S., Biotechnological Aspects of Microbial Extracellular Electron Transfer. Microbes Environ, 2015. 30(2): p. 133-9.
117. Kumar, A., et al., The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 2017. 1(3): p. 0024.
118. Liu, H., et al., Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers. Angew Chem Int Ed Engl, 2010. 49(37): p. 6596-9.
119. Brown, M.M., et al., Novel Peptide from Commensal Staphylococcus simulans Blocks Methicillin-Resistant Staphylococcus aureus Quorum Sensing and Protects Host Skin from Damage. Antimicrob Agents Chemother, 2020. 64(6).
120. Hammad, M., et al., Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement, 2018. 125: p. 634-644.
121. Yang, A.C.C., et al., Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics. Physical Review Letters, 2003. 90(10): p. 108103.
122. Yang, A.C., A.L. Goldberger, and C.K. Peng, Genomic classification using an information-based similarity index: application to the SARS coronavirus. J Comput Biol, 2005. 12(8): p. 1103-16.
123. Gallo, R.L., S. epidermidis influence on host immunity: more than skin deep. Cell Host Microbe, 2015. 17(2): p. 143-4.
124. Wu, S., et al., Sleep apnea screening based on Photoplethysmography data from wearable bracelets using an information-based similarity approach. Comput Methods Programs Biomed, 2021. 211: p. 106442.
125. Nagase, N., et al., Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci, 2002. 64(3): p. 245-50.
126. Otto, M., Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol, 2012. 34(2): p. 201-14.
127. Balasubramaniam, A., et al., Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Sci Rep, 2020. 10(1): p. 21585.
128. Serrano, A., et al., Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes. Int J Mol Sci, 2012. 13(11): p. 14492-517.
129. Moqsud, M.A., et al., Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag, 2013. 33(11): p. 2465-9.
130. Qian, F., et al., A 1.5 microL microbial fuel cell for on-chip bioelectricity generation. Lab Chip, 2009. 9(21): p. 3076-81.
131. Guo, A., et al., Effects of physiological electric fields on migration of human dermal fibroblasts. J Invest Dermatol, 2010. 130(9): p. 2320-7.
132. Nuccitelli, R., et al., Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen, 2008. 16(3): p. 432-41.
133. Love, M.R., et al., Effects of electrical stimulation on cell proliferation and apoptosis. J Cell Physiol, 2018. 233(3): p. 1860-1876.
134. Ding, S., et al., Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng, 2017. 114(2): p. 260-280.
135. Chen, C., et al., Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res, 2019. 23: p. 25.
136. Marito, S., et al., Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Sci Rep, 2021. 11(1): p. 12001.
137. Blount, K.F. and R.R. Breaker, Riboswitches as antibacterial drug targets. Nat Biotechnol, 2006. 24(12): p. 1558-64.
138. Schneider, C. and M. Mack, A second riboflavin import system is present in flavinogenic Streptomyces davaonensis and supports roseoflavin biosynthesis. Mol Microbiol, 2021. 116(2): p. 470-482.
139. Shapiro, S., Speculative strategies for new antibacterials: all roads should not lead to Rome. J Antibiot (Tokyo), 2013. 66(7): p. 371-86.
140. Mora-Lugo, R., J. Stegmuller, and M. Mack, Metabolic engineering of roseoflavin-overproducing microorganisms. Microb Cell Fact, 2019. 18(1): p. 146.
141. Van Tyne, D., M.J. Martin, and M.S. Gilmore, Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel), 2013. 5(5): p. 895-911.
142. Parihar, P.S., S. Keshavkant, and S.K. Jadhav, Electrogenic potential of Enterococcus faecalis DWW1 isolated from the anodic biofilm of a dairy wastewater fed dual chambered microbial fuel cell. Journal of Water Process Engineering, 2022. 45: p. 102503.
143. Cui, X., et al., Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach. Entropy, 2017. 19(12).
144. Gunning, D., et al., XAI-Explainable artificial intelligence. Sci Robot, 2019. 4(37).
145. Holzinger, A., et al., Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov, 2019. 9(4): p. e1312.
146. Yamamoto, S., et al., The human microbiome and COVID-19: A systematic review. PLoS One, 2021. 16(6): p. e0253293.
指導教授 黃俊銘 王孫崇(Chun-Ming Huang Sun-Chong Wang) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明