博碩士論文 109421056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.162.166
姓名 胡瓊文(Chiung-Wen Hu)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 考量即時性路況動態電動車途程問題之城市物流
(Dynamic Electric Vehicle Routing Problem of City Logistics Considering real-time road conditions)
相關論文
★ 企業流程為核心的食品產業運籌體系規劃:低溫物流部份★ 以企業流程方法規劃整體飛航後勤維修體系之研究
★ 成衣產業導入ERP運籌管理方案之個案研究★ 光電產業試產基地之生產最佳化模式:以光投影機為例
★ TFT LCD產業獲利因素之探討★ 科技事業進行合併/讓售之決策過程與成效之個案探討
★ 企業治理、風險及遵循解決方案導入之個案研究-以職責分離資訊系統為例★ 品質機能展開與多準則決策於設備開發應用
★ ERP導入品質因素對IFRS轉換專案之影響★ ERP投資金額對服務品質及導入後IT治理目標之分析
★ ERP 導入問題對專案的影響★ IFRS轉換對員工退休金計畫影響
★ IFRS轉換問題對IFRS效益的影響★ 電子產業新產品開發參考模式之發展
★ 應用資料科學方法提昇國防裝備可靠度之研究-以防空系統為例★ 企業資訊方案行銷歷程之探討-以MES為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 城市物流 (City logistics) 是指在一個城市的地理範圍內進行實體物品配送的物流型態,大多以運輸車輛為主。而近年來因為環保意識的抬頭,碳排放成為重大議題,因此車輛路徑問題 (Vehicle Routing Problem, VRP) 從原本燃油動力車輛 (Internal-combustion Engine Vehicles) 的研究逐漸轉向以研究電動車 (Electric Vehicle, EVs) 為主的電動車輛途程問題 (Electric vehicle routing problem, EVRP ) 。關於電動車的論文大多都是以旅行銷售員 (Travelling salesman problem, TSP) 之構想去改良延伸出電動車輛途程問題,甚至也有些人研究電動車之耗能、續航和充電以及充電站之配置等問題。吾人發現目前的論文很少以即時路況做為資料解決此類問題。
因此,本文的重點和貢獻在於即時性資料的應用,提出一個動態電動車途程問題 (Dynamic electric vehicle routing problem, Dynamic-EVRP) 數學規劃模型並結合即時數據分析利用基因演算法 (Genetic Algorithm, GA) 來規劃最佳經濟效果之途程。在接下來的章節中將詳細介紹本文在途程規劃和計算過程中考慮了哪些因素,以及如何判斷和分析即時數據。最後,吾人將結合地理資訊系統 (Geographic Information System, GIS) 使用程式和兩個範例來對本研究進行驗證。

關鍵字: 城市物流、動態車輛路徑問題、電動車、即時性、地理資訊系統
摘要(英) City logistics refers to the logistics type of physical goods distribution within the geographical scope of a city, most of which are based on cars. In recent years, due to the rise of environmental awareness, carbon emissions have become a major issue. Therefore, the Vehicle Routing Problem (VRP) has gradually shifted from the original research on internal-combustion engine vehicles to the research on Electric Vehicle Routing Problem (EVRP) . Most of the papers on Electric Vehicles (EVs) are based on the idea of the Traveling Salesman Problem (TSP) to apply Electric Vehicle Routing Problem. Other issues also include charging problem and the configuration of charging stations. We find that very few current papers address such issues with real-time road conditions as data. Therefore, the focus and contribution of this paper lies in the application of real-time data, combined with the knowledge brought by predecessors, a mathematical programming model of Dynamic Electric Vehicle Routing Problem (DEVRP) is proposed and combined with real-time data analysis using Genetic Algorithm (GA) to plan the path for the best economic results. In the following chapters, we will introduce in detail what factors are considered in the journey planning and calculation process in this paper, and how to judge and analyze the real-time data. Finally, we will use a program and two cases using a Geographic Information System (GIS) to validate this method.
Keywords: City logistics, Dynamic electric vehicle routing problem, Immediacy, Geographic information system
關鍵字(中) ★ 城市物流
★ 動態車輛路徑問題
★ 電動車
★ 即時性
★ 地理資訊系統
關鍵字(英) ★ City logistics
★ Dynamic electric vehicle routing problem
★ Immediacy
★ Geographic information system
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 viii
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的和範圍 1
1.2.1 研究目的 1
1.2.2 研究範圍 2
2. 文獻探討 3
2.1 城市物流 3
2.1.1 車輛途程問題 3
2.1.2 動態車輛途程問題以及解決方法 6
2.2 電動車之城市物流 8
2.2.1 充電相關文獻 9
2.2.2 耗電相關文獻 11
3. 模型發展 13
3.1 問題描述 13
3.2 數學模型 15
3.2.1 完整模型 17
3.2.2 行駛時間 18
3.2.3 充電站時間 19
3.2.4 裝貨和卸貨時間 23
4. 求解方法 25
4.1 求解方法構想 25
4.2 演算法 32
4.2.1 基因演算法 34
4.2.2 平準化 50
5. 應用案例 54
5.1 參數基本設定 54
5.2 測試例題 55
5.2.1 台灣案例 55
5.2.2 日本案例 61
5.3 不同時段測試 65
5.3.1 台灣案例 65
5.3.2 日本案例 68
5.3.3 台灣和日本比較 70
5.4 迭代次數之學習曲線圖 71
5.4.1 台灣案例 71
5.4.2 日本案例 72
6. 結論與後續研究 73
6.1 結論 73
6.2 後續研究 73
參考文獻 75
附錄 80
參考文獻 Abdelwahed, A., Van den Berg, P.L., Brandt, T., Collins J., & Ketter, W. (2020). Evaluating and Optimizing Opportunity Fast-Charging Schedules in Transit Battery Electric Bus Networks. Transportation Science, 54(6), 1601– 1615.
Afroditi, A., Boile, M., Theofanis, S., Sdoukopoulos, E., & Margaritis, D. (2014). Electric vehicle routing problem with industry constraints: trends and insights for future research, Transportation Research Procedia, 3, 452-459.
Baldacci, R., Mingozzi, A., Roberti R., & Calvo R. W. (2013). An Exact Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem. Operations Research, 61(2), 298-314
Barrett, W., White, C. T., & White, C. C. (2004). Anticipatory route selection. Transportation Science, 38(4), 473–487.
Benyahia, I., & Potvin, J. Y. (1998). Decision support for vehicle dispatching using genetic programming. IEEE Transactions on Systems Man and Cybernetics Part A, 28 (3), 306–314.
Bieding, T., Görtz S., & Klose A. (2009). Innovations in Distribution Logistics : On line Routing per Mobile Phone A Case on Subsequent Deliveries of Newspapers. pp. 29-51, Berlin Heidelberg New York, Springer.
Cheung, B., Choy, K. L., Li, C. L., Shi, W., & Tang, J. (2008). Dynamic routing model and solution methods for fleet management with mobile technologies. International Journal of Production Economics, 113(2), 694-705.
Chen, Z. & Xu, H. (2006). Dynamic column generation for dynamic vehicle routing with time windows. Transportation Science, 40(1), 74–88.
Crainic, T. G. (2009). Models for evaluating and planning city logistics systems. Transportation Science, 43(4), 432-454.
Dantzig, G., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91.
Drexl, M. (2012). Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints. Transportation Science, 46(3), 297-316.
Edwardes, W., & Rakha, H. (2014). Virginia tech comprehensive power-based fuel consumption model. Transportation Research Record: Journal of the Transportation Research Board, 2428(1), 1–9.
Erdoan, G., & Yildirim, E. A. (2020). Exact and Heuristic Algorithms for the Carrier-Vehicle Traveling Salesman Problem. Transportation Science, 5(1), 101-121.
Erdoğan, S., & Miller-Hooks, E. (2012). A Green Vehicle Routing Problem. Transportation Research: Part E, 48, 100–114.
Farhangi, H., Dinçer, K., & Warren, S. (May 2016). A Realistic Driving Profile Optimization for Electric Vehicles. Industrial and Systems Engineering Research Conference. Missouri University of Science and Technology, Rolla, MO, USA.
Fiori, C., Ahn, K., & Hesham, A. R. (2016). Power-based electric vehicle energy consumption model: Model development and validation. Applied Energy, 168, 257-268.
Flood, M. M. (1956). The traveling salesman problem. Operations Research, 4(1), 61-75.
Gadsden, S. A., McCullough K., & Habibi S. R. (June-July 2011). Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model Approach. American Control Conferenceon O′Farrell Street, San Francisco, CA, USA.
Gao, D. W., Mi, C., & Emadi, A. (2007). Modeling and simulation of electric and hybrid vehicles. Proc IEEE, 95, 729–45.
Gendreau, M., Guertin, F., Potvin, J. Y., & Taillard, É. D. (1999). Tabu Search for Real-Time Vehicle Routing and Dispatching. Transportation Science, 33(4), pp.381– 390.
Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81-99.
Guy, D., Fausto, E., Stefan, I., & Michael, S. (2016) Exact algorithms for electric vehicle routing problems with time windows. Operations Research, 64(6), 1388–1405.
Hilshey, A. D. (2015). A trip-purpose based model of plug-in electric vehicle charging demand. pp. 1-5, Denver CO USA, IEEE.
Holland, H. J. (1975). Adaptive Control of Ill-Defined Systems: Genetic Algorithms and Adaptation. pp. 317-333, Boston, Springer.
Jaillet, P., & Wagner, M. R. (2008). Generalized Online Routing: New Competitive Ratios, Resource Augmentation, and Asymptotic Analyses. Operations Research, 56(3), 745-757.
Jepsen, M., Spoorendonk, S., & Ropke, S. (2013). A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transportation Science, 47(1), 23-37.
Jonathan, D. A., & Pitu, B. M. (2014). Online routing and battery reservations for electric vehicles with swappable batteries. Transportation Research: Part B, 70, 285-304.
Kovacs, A. A., Golden L. B., Hartl F. R. & Parragh N. S. (2015). The Generalized Consistent Vehicle Routing Problem. Transportation Science, 49(4), 796-816.
Kullman, N. D., Goodson, J. C., & Mendoza, J. E. (2021). Electric Vehicle Routing with Public Charging Stations. Transportation Science, 55(3), 637-659 .
Liukkonen M., Hentunen, A., Suomela, J., Leivo, A., & Sainio P. (2010). Full-Scale Hardware-in-the-Loop Verification Environment for Heavy-Duty Hybrid Electric Vehicles. World Electric Vehicle Journal, 4(1), 119-127
Markel, A. J., Bennion, K., Kramer, W., Bryan, J., & Giedd, J. (2009). Field testing plug- in hybrid electric vehicles with charge control technology in the Xcel energy territory. Citeseer.
Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research: Part B, 103, 87–110.
Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2005). Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, 10(4), 327–343.
Park, S., Rakha, H., Ahn, K., & Moran, K. (2013). Virginia tech comprehensive power-based fuel consumption model.(VT-CPFM) : model validation and calibration considerations. International Journal of Transportation Science and Technology, 2, 317–36.
Pelletier, S., Jabali, O., & Laporte, G. (2018). Charge scheduling for electric freight vehicles. Transportation Research: Part B, 115, 246-269.
Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1-11.
Powell, B. W., Sheffi, Y., Nickerson, S. K., Butterbaugh K., & Atherton S. (1988). Maximizing profits for North American Van Lines’ truckload division: a new framework for pricing and operation. Interfaces, 18(1) , 21–41.
Quddus, M. A., Shahvari, O., Marufuzzaman, M., Ekşioğlu, S. D., & Krystel, K. (2021). Designing a reliable electric vehicle charging station expansion under uncertainty. International Journal of Production Economics, 236, 108-132.
Rakha, H. A., Ahn, K., Moran, K., Saerens, B., & Van den Bulck, E. (2011). Virginia tech comprehensive power-based fuel consumption model: model development and testing. Transportation Research: Part D,16, 492–503.
Russell, W. B., & Pascal, V. H. (2004). Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research , 52(6), 977–987
Ruan, M., Lin, J. & Kawamura, K. (2012). Modeling urban commercial vehicle daily tour Chaining. Transportation Research: Part E, 48(6), 1169-1184
Sathaye, N., & Kelley S. (2013). An approach for the optimal planning of electric vehicle infrastructure for highway corridors. Transportation Research: Part E, 59, 15-33.
Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520.
Schroeder, A. & Traber, T. (2012) The Economics of Fast Charging Infrastructure for Electric Vehicles. Energy Policy, 43, 136-144.
Shemer, N. (2012). Better Place Unveils Battery-Swap Network. Jerusalem Post.
Sweda, M. T., Dolinskaya, D. I., & Klabjan, D. (2017). Adaptive Routing and Recharging Policies for Electric Vehicles. Transportation Science, 51(4), 1326-1348
Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31(2), 170–186.
Thompson, P. M., & Psaraftis, H. N. (1993). Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems. Operations Research, 41(5), 935-946.
Thomas, B. W. & White, Chelsea C. I. (2004). Anticipatory route selection. Transportation Science, 38(4), 473-487.
Vagg, C., Brace, C. J., Hari, D., Akehurst, S., Poxon, J., Ash L. (2013). Development and Field Trial of a Driver Assistance System to Encourage Eco-Driving in Light Commercial Vehicle Fleets. IEEE, 14(2), 796-805
Villegas, G. J., Gu´eret, C., Mendoza, E. J. & Montoya, A. (June 2018). The technician routing and scheduling problem with conventional and electric vehicle. working paper, URL https://hal.archives-ouvertes.fr/hal-01813887.
Wang, Y. W., & Lin, C. C. (2009). Locating road-vehicle refueling stations. Transportation Research: Part E, 45(5), 821-829.
Wilson, N. H. M. & Colvin, N. H. (1977). Computer Control of the Rochester Dial-a-Ride System. pp. 77-31, USA, Cambridge : Massachusetts Institute of Technology, Center for Transportation Studies.
Xu, X., Wang C., & Zhou P. (2021). GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. International Journal of Production Economics, 235, 78-108.
Zhang, S., Gajpal, Y., Appadoo, S. S., & Abdulkader, M.M.S. (2018). Electric vehicle routing problem with recharging stations for minimizing energy consumption. International Journal of Production Economics, 203, 404-413.
指導教授 呂俊德 審核日期 2022-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明