博碩士論文 109226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.128.172.154
姓名 陳治光(Chen Zhi-Guang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用脈衝磁控濺鍍磊晶成長低溫氮化鎵磊晶層於矽基板之研究
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 現今業界多半使用金屬氣相沉積法(Metal-organic Chemical Vapor Deposition,MOCVD)以及分子束磊晶(Molecular beam epitaxy,MBE)兩種方式磊晶氮化鎵(Gallium Nitride,GaN)薄膜,但因為兩種製程方式之工作溫度接近或超過1000˚C,考量到基板與薄膜的熱膨脹係數不同,高溫製程容易使磊晶的薄膜在降溫的過程中產生裂紋、翹曲等情況,並且MOCVD以及MBE在磊晶氮化鎵薄膜時,均具有使用有毒氣體和低鍍率的問題。
本研究利用高能脈衝磁控濺鍍(High Power Impulse Magnetron Sputtering,HiPIMS)的製程方式磊晶氮化鎵薄膜於矽基板上,避免使用毒性物質,並提升濺鍍速率,透過高能量且高密度的電漿生長磊晶氮化鎵薄膜,將達到降低製程溫度、提高鍍率、使用非毒性氣體的方式進行研究。
在研究過程中,固定製程溫度為500˚C,改變放能時間(On time)、佔空比(Duty cycle)、氣體流量、偏壓等參數,透過X光繞射儀(X-ray Diffractometer,XRD)分析結晶強度和晶格峰值半高寬(Full Width at Half Maximum,FWHM)、掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)分析薄膜厚度及表面生長狀況、原子力顯微鏡(Atomic Force Microscopy,AFM)分析粗糙度、光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS)分析薄膜的元素組成成份、穿透式電子顯微鏡(Transmission Electron microscopy,TEM)分析晶格排列及缺陷情況。最後,本研究成功利用低溫高能脈衝磁控濺鍍在矽基板上磊晶出具有高結晶度的氮化鎵薄膜。
摘要(英) Metal-organic chemical vapor deposition(MOCVD) and molecular beam epitaxy(MBE) have been applied to deposit epitaxial gallium nitride(GaN) thin films in the industry. The process temperatures on MOCVD and MBE were approached to or than 1000˚C. Considering the thermal expansion coefficient in between the substrate and the GaN film, the higher process temperature the more cause cracks and warpage happened on the epitaxial film. Beside, MOCVD and MBE have the problems of using toxic gas and low depositing rate when fabricating the GaN films.
In this study, a high power impulse magnetron sputtering(HiPIMS) has been useds to fabricate epitaxial GaN films on Si substrate without toxic substances during the sputtering and high depositing rate. The high-energy and high-density plasma during the HiPIMS process, decrease the process temperature and increas the depositing rate without the toxic gases.
The process temperature was fixed at 500˚C, the on-time, duty cycle, gas flow, and bias voltage were varied. X-ray diffractometer(XRD) has been applied to analyze crystalline strength and lattice peak full-width at half-width(FWHM), scanning electron microscope(SEM) to analyze film thickness and surface growth conditions, atomic-force microscopy(AFM) to analyze the surface roughness, photoelectron spectroscopy(XPS) to analyze the elemental composition of the films, transmission electron microscopy(TEM) to analyze the crystallinity grid arrangement and defects. Finally, the epitaxial GaN thin films have been fabricated on the Si substrate by using HiPIMS with low process temperature successfully.
關鍵字(中) ★ 氮化鎵
★ 脈衝磁控濺鍍
★ 低溫
★ 矽基板
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-3 研究動機 6
第二章 基礎理論 8
2-1 氮化鎵的基本性質 8
2-2 濺鍍原理介紹 10
2-3 高功率脈衝磁控濺鍍原理介理 11
2-3-1 自濺效應 12
2-3-2 低沉積速率 13
第三章 實驗機台架構與量測儀器介紹 14
3-1 製程設備介紹 14
3-1-1 多腔式真空濺鍍系統介紹 14
3-1-2 高功率脈衝磁控濺鍍系統介紹 15
3-2 量測儀器介紹 15
3-2-1 X光繞射儀(XRD) 15
3-2-2 掃描式電子顯微鏡(SEM) 16
3-2-3 X射線能量散布分析儀(EDS) 16
3-2-4 光電子能譜儀(XPS) 17
3-2-5 原子力顯微鏡(AFM) 17
3-2-6 穿透式電子顯微鏡(TEM) 17
3-3 薄膜製作流程 17
第四章 實驗結果 19
4-1 改變放能時間對於氮化鎵薄膜之分析 19
4-2 改變佔空比對於氮化鎵薄膜之分析 25
4-3 改變製程氣體比例對於氮化鎵薄膜之分析31
4-4 改變基板偏壓對於氮化鎵薄膜之分析 38
4-5 薄膜厚度對於氮化鎵薄膜之分析 44
4-6 最佳參數分析 47
第五章 結論與未來研究 50
參考文獻 51
參考文獻 [1] D. Rotman, "We’re not prepared for the end of moore’s law. " MIT Technology Review February 24, 2020.
[2] Matioli, Elison, et al. "High-brightness polarized light-emitting diodes." Light: Science & Applications 1(8), e22-e22, 2012.
[3] Dimitrov, R., et al. "Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire." Journal of Applied Physics 87(7), pp. 3375-3380, 2000.
[4] Prabaswara, Aditya, et al. "Review of GaN thin film and nanorod growth using magnetron sputter epitaxy." Applied Sciences 10(9), pp. 3050, 2020
[5] Nakamura, Shuji. "GaN-based blue/green semiconductor laser." IEEE journal of selected topics in quantum electronics 3(2), pp. 435-442, 1997.
[6] International Energy Agency, "World Energy Outlook 2021" IEA Publications, pp. 35, France, October 2021.
[7] Ambacher, O., et al. "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures." Journal of applied physics 85.6, pp. 3222-3233, 1999.
[8] Navitas, "Sustainability Report 2021" USA, February 2022.
[9] Gan Systems, "GaN Systems and Partners tackle the Net Zero Challenge" https://gansystems.com/newsroom/net-zero-challenge/
[10] James, "給綠色地球的一份禮物:英諾賽科用GaN助力碳減排行動" LaoYaoBa December 2021.
[11] Liu, L., and James H. Edgar. "Substrates for gallium nitride epitaxy." Materials Science and Engineering: R: Reports 37(3), pp. 61-127, 2002.
[12] Zhang, Yuanhang. "Comparison between competing requirements of GaN and SiC family of power switching devices." IOP Conference Series: Materials Science and Engineering. 738(1), IOP Publishing, 2020.
[13] Grzegory, I., and S. Porowski. "Properties, processing and applications of Gallium Nitride and Related Semiconductors." EMIS Datareview Series 23, pp. 359-367, 1999.
[14] Johnson, Warren C., J. B. Parson, and M. C. Crew. "Nitrogen compounds of gallium. iii." The journal of physical chemistry 36(10), pp. 2651-2654, 2002.
[15] Maruska, H. Pi, and J. J. Tietjen. "The preparation and properties of vapor‐deposited single‐crystal‐line GaN." Applied Physics Letters 15(10), pp. 327-329, 1969.
[16] Hovel, H.J.; Cuomo, J.J. “Electrical and Optical Properties of rfSputtered GaN and InN.’’Appl. Phys. Lett , 20, pp. 71–73, 1972.
[17] Amano, Hiroshi, et al. "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer." Applied Physics Letters 48(5), pp. 353-355, 1986.
[18] Amano, Hiroshi, et al. "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)." Japanese journal of applied physics 28(12A), L2112, 1989.
[19] Kouznetsov, Vladimir, et al. "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology 122(2-3), pp. 290-293, 1999.
[20] Dadgar, Armin, et al. "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness." Japanese Journal of Applied Physics 39(11B), L1183, 2000.
[21] Junaid, M., et al. "Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering." Journal of Applied Physics 110(12), pp. 123519, 2011.
[22] Liu, Danshuo, et al. "Polarization‐Driven‐Orientation Selective Growth of Single‐Crystalline III‐Nitride Semiconductors on Arbitrary Substrates." Advanced Functional Materials 32(14), pp. 2113211, 2022.
[23] Watanabe, T., et al. "AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering." Applied Physics Letters 104(18), pp. 182111, 2014.
[24] Roccaforte, Fabrizio, et al. "Physics and technology of gallium nitride materials for power electronics." La Rivista del Nuovo Cimento 41(12), pp. 625-681, 2018.
[25] 黃智方、張庭輔,「氮化鎵功率元件簡介」,電子資訊,20(1), 30-40頁,2014年。
[26] 張煒旭、黃宇中和林稔杰,「單晶碳化矽在微電子及微感測元件之應用」,科儀新知,24(4),4-14頁,2003。
[27] Jones, Edward A., Fei Fred Wang, and Daniel Costinett. "Review of commercial GaN power devices and GaN-based converter design challenges." IEEE Journal of Emerging and Selected Topics in Power Electronics 4(3), pp. 707-719, 2016.
[28] Kelly, Peter J., and R. Derek Arnell. "Magnetron sputtering: a review of recent developments and applications." Vacuum 56(3), pp. 159-172, 2000.
[29] Kelly, Peter J., and R. Derek Arnell. "Magnetron sputtering: a review of recent developments and applications." Vacuum 56(3), pp. 159-172, 2000.
[30] Helmersson, Ulf, et al. "Ionized physical vapor deposition (IPVD): A review of technology and applications." Thin solid films 513(1-2), pp. 1-24, 2006.
[31] Sarakinos, Kostas, Jones Alami, and Stephanos Konstantinidis. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and coatings technology 204(11), pp. 1661-1684, 2010.
[32] Zhang, Haibao, Jyh-Shiarn Cherng, and Qiang Chen. "Recent progress on high power impulse magnetron sputtering (HiPIMS): The challenges and applications in fabricating VO2 thin film." AIP Advances 9(3), pp. 035242, 2019.
[33] Kouznetsov, Vladimir, et al. "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology 122(2-3), pp. 290-293, 1999.
[34] Samuelsson, Mattias, et al. "On the film density using high power impulse magnetron sputtering." Surface and Coatings Technology 205(2), pp. 591-596, 2010.
[35] Andersson, Joakim, and André Anders. "Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion." Applied Physics Letters 92(22), pp. 221503, 2008.
[36] Anders, Andre. "Deposition rates of high power impulse magnetron sputtering: Physics and economics." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28(4), pp. 783-790, 2010.
[37] Luo, Quanshun, S. Yang, and K. E. Cooke. "Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties." Surface and Coatings Technology 236, pp. 13-21, 2013.
[38] Holtzer, N., et al. "Improving HiPIMS deposition rates by hybrid RF/HiPIMS co-sputtering, and its relevance for NbSi films." Surface and Coatings Technology 250, pp. 32-36, 2014.
[39] Olejníček, J., et al. "Investigation of reactive HiPIMS+ MF sputtering of TiO2 crystalline thin films." Surface and Coatings Technology 232, pp. 376-383, 2013.
[40] Greczynski, Grzegorz, and Lars Hultman. "Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering." Vacuum 124, pp. 1-4, 2016.
[41] Hajihoseini, Hamidreza, and Jon Tomas Gudmundsson. "Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering." Journal of Physics D: Applied Physics 50(50), pp. 505302, 2017.
[42] Majchrzak, Dominika, et al. "Influence of pulsed Al deposition on quality of Al-rich Al (Ga) N structures grown by molecular beam epitaxy." Surfaces and Interfaces 27, pp. 101560, 2021.
[43] MC Biesinger : X-ray Photoelectron Spectroscopy (XPS) Reference Pages. http://www.xpsfitting.com/search/label/Gallium.
[44] Sang, Ling, et al. "Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy." Nanoscale Research Letters 9(1), pp. 1-5, 2014.
[45] Schmeisser, D., and K. Jacobi. "Reaction of oxygen with gallium surfaces." Surface Science 108(2), pp. 421-434, 1981.
[46] Maier, Konrad, et al. "Photoluminescence detection of surface oxidation processes on InGaN/GaN nanowire arrays." ACS sensors 3(11), pp. 2254-2260, 2018.
[47] Kumar, Mukesh, et al. "Facile synthesis and photoluminescence spectroscopy of 3D-triangular GaN nano prism islands." Dalton Transactions 43(31), pp. 11855-11861, 2014.
[48] Viloan, Rommel Paulo B., et al. "Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge." Plasma Sources Science and Technology 29(12), pp. 125013, 2020.
[49] Zhou, X. W., and H. N. G. Wadley. "Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers." Journal of Applied Physics 87(5), pp. 2273-2281, 2000.
[50] Zhao, Xiaoli, et al. "Effect of pulsed off-times on the reactive HiPIMS preparation of zirconia thin films." Vacuum 118, pp. 38-42, 2015.
[51] 賴禹丞,「高功率脈衝磁控濺鍍二氧化鋯介電層於金氧半電容之性質研究」,國立臺灣師範大學,碩士論文,民國103年。
[52] Okada, Hiroshi, et al. "Investigation of HCl-based surface treatment for GaN devices." AIP Conference Proceedings. 1709(1), AIP Publishing LLC, 2016.
[53] Meier, Steffen M., et al. "First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy." Plasma Sources Science and Technology 27(3), pp. 035006, 2018.
[54] Zhang, L. Q., et al. "PL and XPS study of radiation damage created by various slow highly charged heavy ions on GaN epitaxial layers." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269(23), pp. 2835-2839, 2011.
[55] Matolın, V., et al. "Experimental system for GaN thin films growth and in situ characterisation by electron spectroscopic methods." Vacuum 76(4), pp. 471-476, 2004.
[56] Thakur, Varun, and S. M. Shivaprasad. "Electronic structure of GaN nanowall network analysed by XPS." Applied Surface Science 327, pp. 389-393, 2015.
[57] Heikman, Sten, et al. "Oxygen doping of c‐plane GaN by metalorganic chemical vapor deposition." physica status solidi (c) 7, pp. 2557-2561, 2003.
[58] Velicu, Ioana-Laura, et al. "Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach." Applied Surface Science 424, pp. 397-406, 2017.
[59] 李志偉,「高功率磁控濺鍍技術介紹」,真空科技,30(1), 33-48頁,2017。
[60] Maruyama, Toshiro, and Hidetomo Miyake. "Gallium nitride thin films deposited by radio-frequency magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24(4), pp. 1096-1099, 2006.
[61] Motomura, T., et al. "Influence of nitrogen gas flow ratio on gallium nitride film growth using high-density convergent plasma sputtering device at room temperature." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 39(1), pp. 013001, 2021.
[62] Tanide, Atsushi, et al. "Roles of atomic nitrogen/hydrogen in GaN film growth by chemically assisted sputtering with dual plasma sources." ACS omega 5(41), pp. 26776-26785, 2020.
[63] Wang, H., et al. "Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition." Journal of Physics D: Applied Physics 42(14), pp. 145410, 2009.
[64] 陳維鈞、田志盛、吳岳翰、郭守義、賴芳儀、蕭健男和張立,「化學束磊晶系統成長氮化銦磊晶薄膜之製程研究」,科儀新知, 198,20-37,2014。
[65] 王振玉、徐勝、張棟、劉新才、柯培玲和汪愛英,「N2流量對HIPIMS製備TiSiN塗層結構和力學性能的影響」,金屬學報,50(5), 540-546頁,2014。
[66] Kateb, Movaffaq, et al. "On the role of ion potential energy in low energy HiPIMS deposition: An atomistic simulation." Surface and Coatings Technology 426, pp. 1276, 2021.
[67] Avino, Fabio, Alban Sublet, and Mauro Taborelli. "Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse." Plasma Sources Science and Technology 28(1), pp. 01LT03, 2019.
[68] Iborra, E., et al. "Role of argon ion bombardment in sputtered AlN films for SAW devices." 2002 IEEE Ultrasonics Symposium, 2002.
[69] Wang, J., et al. "Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates." Journal of Materials Science: Materials in Electronics 27(3), pp. 3026-3032, 2016.
[70] Cemin, Felipe, et al. "Benefits of energetic ion bombardment for tailoring stress and microstructural evolution during growth of Cu thin films." Acta Materialia 141, pp. 120-130, 2017.
[71] Chen, Yung-I., et al. "Effect of bias voltage on mechanical properties of HiPIMS/RFMS cosputtered Zr–Si–N films." Materials 12(17), pp. 2658, 2019.
[72] Zegtouf, Hind, et al. "Influence of substrate bias voltage on structure, mechanical and corrosion properties of ZrO2 thin films deposited by reactive magnetron sputter deposition." Surface and Coatings Technology 393, pp. 125821, 2020.
[73] Sandu, C. S., et al. "Impact of negative bias on the piezoelectric properties through the incidence of abnormal oriented grains in Al0. 62Sc0. 38N thin films." Thin Solid Films 697, pp. 137819, 2020.
[74] 楊芳兒、陳占領、鄭曉華、宋建強、沈濤和董朝暉,「沉積偏壓對脈衝激光沉積CNx薄膜結構和性能的影響」,矽酸鹽學報,41(9),1265-1270頁,2013。
[75] Jun, Seung-Ik, et al. "Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias." Applied physics letters 89(2), pp. 022104, 2006.
[76] Rudolph, Martin, et al. "Influence of backscattered neutrals on the grain size of magnetron-sputtered TaN thin films." Thin Solid Films 658, pp. 46-53, 2018.
[77] Arslan, Engin, et al. "Mosaic structure characterization of the AlInN layer grown on sapphire substrate." Advances in Materials Science and Engineering, 2014, pp. 11, 2014.
[78] Schiaber, Ziani S., et al. "Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering." Journal of Applied Physics 114(18), pp. 183515, 2013.
[79] Wang, Wenliang, Hui Yang, and Guoqiang Li. "Achieve high-quality GaN films on La 0.3 Sr 1.7 AlTaO 6 (LSAT) substrates by low-temperature molecular beam epitaxy." CrystEngComm 15(14), pp. 2669-2674, 2013.
[80] Wang, Wenliang, et al. "Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures." Scientific Reports 5(1), pp. 1-12, 2015.
[81] Martínez-Ara, Luis Arturo, et al. "Structural and optical properties of GaN thin films grown on Si (111) by pulsed laser deposition." Materials Research 22(2), e20180263, 2019.
指導教授 陳昇暉 審核日期 2022-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明