博碩士論文 109226041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.12.153.79
姓名 黃柏智(Bo-Zhi Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低溫生長大面積二維二硫化鉬薄膜之研究
(Study on growth large area two dimension MoS2 thin films at low temperature)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 隨著電晶體尺寸不斷縮小,遵循摩爾定律的難度越高,因此二維材料的研究逐漸興起,就是為了突破物理極限並取代矽等傳統半導體材料,因此本論文主要研究以低溫生長大面積二維二硫化鉬薄膜,成為下一世代半導體材料的選擇。
本研究利用低壓化學氣相沉積法,於藍寶石基板上生長MoS2薄膜,並藉由助長劑的輔助,使生長溫度下降,量測拉曼位移之△k為21cm-1以下的單層結構,PL及吸收光譜量測得出MoS2為直接能隙的特性,AFM量測為0.75nm的單層厚度,HR-TEM量測層間距為0.65nm,MoS2薄膜轉印於SiO2/Si基板其XPS量測未含有助長劑之訊號,由於助長劑於生長時所產生的水溶性層,有助於轉印製程,但同時也影響MoS2薄膜於長時間的保存,藉由可靠性測試後,發現轉印後的MoS2薄膜受於水氣之影響大幅降低,可長達14天的存放,於電性量測中電流開關比約為107、次臨界擺幅約為95mV/decade及電子遷移率約為5cm2/Vs。
該研究證明出以助長劑輔助生長的MoS2薄膜,可達到高品質、大面積、均勻性良好及單層結構的結果,且轉印於SiO2/Si基板上可以有效地保存,更廣泛的應用於電子及光電元件。
摘要(英) As the transistor size shrinking, it is more difficult to follow Moore’s Law. Therefore, the research on two-dimensional materials is gradually emerging to break the physical limit and replace traditional semiconductor materials such as silicon. In this paper, the large area two dimension molybdenum disulfide (MoS2) was grown at low temperature, become one for the choices of next generation semiconductor materials.
The low-pressure chemical vapor deposition method (LPCVD) was applied to grow MoS2 thin films on sapphire substrates .The growth temperature is reduced by using the seeding promoters. The △k of the measured Raman shifting is below 21cm-1, which confirmed that the MoS2 was a monolayer. PL and absorption spectrum measurements confirmed that the MoS2 is a direct bandgap material. The monolayer thickness was 0.750nm measured by AFM, and the interlayer spacing was 0.650nm measured by HR-TEM. The MoS2 film was transferred to the SiO2/Si substrate, and the XPS measurement showed the results were without the signal of the seeding promoter. Due to the water-soluble layer produced by the seeding promoter the process growth, It is helpful for the transfer process, but also affects the long-term storage of the MoS2 films. After the reliability test, it is found that the life-time of the transferred MoS2 films is greatly improved, and the storage time can be preserved up to 14 days. In the electrical measurement of the MoS2 device, Ion/Ioff is about 107, the subthreshold swing is about 95 mV/decade and the mobility is about 5 cm2/Vs.
Finally, the MoS2 films grown with seeding promoters can achieve high quality, large area, good uniformity and monolayer structure, and can be effectively preserved when transferred to SiO2/Si substrate for electronic and optoelectronic applications.
關鍵字(中) ★ 二維材料
★ 二硫化鉬
★ 化學氣相沉積法
★ 低溫生長
★ 大面積
★ 單層
關鍵字(英)
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖目錄 xi
表目錄 xvi
1 第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究目的與方法 4
2 第二章、基礎理論及文獻回顧 5
2-1 二硫化鉬的特性 5
2-1-1 二硫化鉬的晶體結構 5
2-1-2 二硫化鉬的光學特性 8
2-2 文獻回顧 9
2-2-1 二硫化鉬的製備方式 9
2-2-2 生長二硫化鉬的助長劑 14
3 第三章、實驗架構與分析儀器介紹 19
3-1 實驗方法 19
3-1-1 低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition, LPCVD) 19
3-1-2 實驗流程 19
3-1-3 二硫化鉬薄膜轉印製程流程 21
3-2 分析儀器 22
3-2-1 拉曼光譜儀(Raman Spectrometer) 22
3-2-2 光致發光光譜儀(Photoluminescence Spectrometer, PL) 23
3-2-3 光學顯微鏡(Optical Microscope, OM) 24
3-2-4 紫外-可見-近紅外光譜儀(UV-Visible-NIR Spectrometer) 24
3-2-5 高解析度穿透式電子顯微鏡(High Resolution-Transmission Electron Microscope, HR-TEM) 25
3-2-6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 25
3-2-7 原子力顯微鏡(Atomic Force Microscope, AFM) 25
4 第四章、實驗結果 26
4-1 有無氯化鈉生長二硫化鉬薄膜之分析 26
4-1-1 於800℃生長二硫化鉬薄膜有無氯化鈉之分析 26
4-1-2 以氯化鈉生長二硫化鉬薄膜轉印之分析 28
4-1-3 調變生長溫度之分析 30
4-2 調變生長溫度與硫化時間點之分析 32
4-2-1 於550℃生長並調變硫化時間點之分析 32
4-2-2 於600℃生長並調變硫化時間點之分析 34
4-2-3 於650℃生長並調變硫化時間點之分析 36
4-3 二硫化鉬之大面積及均勻性之分析 38
4-3-1 調變三氧化鉬及氯化鈉重量之分析 39
4-3-2 調變氬氣流量之分析 41
4-3-3 提升三氧化鉬及氯化鈉重量之分析 43
4-4 二硫化鉬薄膜轉印之分析 48
4-4-1 元素與表面分析 48
4-4-2 電性量測 50
4-5 二硫化鉬薄膜之可靠度分析 52
4-5-1 無氯化鈉二硫化鉬薄膜之分析 52
4-5-2 有氯化鈉二硫化鉬薄膜之分析 53
4-5-3 二硫化鉬薄膜轉印至二氧化矽基板之分析 56
5 第五章、結論與未來展望 60
5-1 實驗結論 60
5-2 未來展望 62
參考文獻 63
參考文獻 [1] M. C. Lemme, D. Akinwande, C. Huyghebaert, and C. Stampfer, "2D materials for future heterogeneous electronics," Nature Communications, vol. 13, no. 1, pp. 1-5, 2022.
[2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[3] Y. Wu, D. B. Farmer, F. Xia, and P. Avouris, "Graphene electronics: Materials, devices, and circuits," Proceedings of the IEEE, vol. 101, no. 7, pp. 1620-1637, 2013.
[4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[5] R. Ganatra and Q. Zhang, "Few-layer MoS2: a promising layered semiconductor," ACS nano, vol. 8, no. 5, pp. 4074-4099, 2014.
[6] L. Gomez, I. Aberg, and J. Hoyt, "Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm," IEEE electron device letters, vol. 28, no. 4, pp. 285-287, 2007.
[7] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," science, vol. 319, no. 5867, pp. 1229-1232, 2008.
[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011.
[9] 曲建仲. "應用在AI、5G 的先進製程技術:鰭式場效電晶體(FinFET)." https://scimonth.blogspot.com/2017/12/ai5g-finfet.html.
[10] E. Granneman, "Thin films in the integrated circuit industry: requirements and deposition methods," Thin Solid Films, vol. 228, no. 1-2, pp. 1-11, 1993.
[11] A. Kuc and T. Heine, "The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields," Chemical Society Reviews, vol. 44, no. 9, pp. 2603-2614, 2015.
[12] D. Mouloua et al., "Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review," Materials, vol. 14, no. 12, pp. 3283, 2021.
[13] H. Xu et al., "2D heterostructure comprised of metallic 1T-MoS2/Monolayer Og-C3N4 towards efficient photocatalytic hydrogen evolution," Applied Catalysis B: Environmental, vol. 220, pp. 379-385, 2018.
[14] C. Backes et al., "Functionalization of liquid‐exfoliated two‐dimensional 2H‐MoS2," Angewandte Chemie International Edition, vol. 54, no. 9, pp. 2638-2642, 2015.
[15] D. Tan, M. Willatzen, and Z. L. Wang, "Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures," Nano Energy, vol. 56, pp. 512-515, 2019.
[16] D. Sahoo, B. Kumar, J. Sinha, S. Ghosh, S. S. Roy, and B. Kaviraj, "Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light," Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.
[17] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[18] H. Li et al., "From bulk to monolayer MoS2: evolution of Raman scattering," Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012.
[19] S. Mignuzzi et al., "Effect of disorder on Raman scattering of single-layer Mo S 2," Physical Review B, vol. 91, no. 19, pp. 195411, 2015.
[20] J.-Y. Lee et al., "Evolution of defect formation during atomically precise desulfurization of monolayer MoS2," Communications Materials, vol. 2, no. 1, pp. 1-10, 2021.
[21] G.-Y. Zhao et al., "Recent progress on irradiation-induced defect engineering of two-dimensional 2H-MoS2 few layers," Applied Sciences, vol. 9, no. 4, pp. 678, 2019.
[22] B. Li et al., "Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water," Scientific reports, vol. 7, no. 1, pp. 1-12, 2017.
[23] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS 2: a new direct-gap semiconductor," Physical review letters, vol. 105, no. 13, pp. 136805, 2010.
[24] A. Castellanos-Gomez, J. Quereda, H. P. van der Meulen, N. Agraït, and G. Rubio-Bollinger, "Spatially resolved optical absorption spectroscopy of single-and few-layer MoS2 by hyperspectral imaging," Nanotechnology, vol. 27, no. 11, pp. 115705, 2016.
[25] M. S. Kim et al., "Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment," Thin Solid Films, vol. 590, pp. 318-323, 2015.
[26] A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010.
[27] L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, "Atomic layer deposition of a MoS 2 film," Nanoscale, vol. 6, no. 18, pp. 10584-10588, 2014.
[28] J. i. Shimizu et al., "Low-temperature MoS 2 film formation using sputtering and H 2 S annealing," IEEE Journal of the Electron Devices Society, vol. 7, pp. 2-6, 2018.
[29] H. Yu et al., "Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films," ACS nano, vol. 11, no. 12, pp. 12001-12007, 2017.
[30] H. J. Choi et al., "Large-scale self-limiting synthesis of monolayer MoS2 via proximity evaporation from Mo films," Crystal Growth & Design, vol. 20, no. 4, pp. 2698-2705, 2020.
[31] P. Wang et al., "Spontaneous n-Doping in Growing Monolayer MoS2 by Alkali Metal Compound-Promoted CVD," ACS Applied Materials & Interfaces, vol. 13, no. 48, pp. 58144-58151, 2021.
[32] S. H. Safeer et al., "Sodium-Mediated Low-Temperature Synthesis of Monolayers of Molybdenum Disulfide for Nanoscale Optoelectronic Devices," ACS Applied Nano Materials, vol. 4, no. 4, pp. 4172-4180, 2021.
[33] G. Li et al., "Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate," The Journal of Physical Chemistry Letters, vol. 11, no. 4, pp. 1570-1577, 2020.
[34] A. Singh, M. Moun, M. Sharma, A. Barman, A. K. Kapoor, and R. Singh, "NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2," Applied Surface Science, vol. 538, pp. 148201, 2021.
[35] L. Seravalli et al., "Gold nanoparticle assisted synthesis of MoS 2 monolayers by chemical vapor deposition," Nanoscale Advances, vol. 3, no. 16, pp. 4826-4833, 2021.
[36] G. Li et al., "Ammonium Salts: New Synergistic Additive for Chemical Vapor Deposition Growth of MoS2," The Journal of Physical Chemistry Letters, vol. 12, pp. 12384-12390, 2021.
[37] L. Seravalli and M. Bosi, "A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes," Materials, vol. 14, no. 24, pp. 7590, 2021.
[38] J. Zhou et al., "A library of atomically thin metal chalcogenides," Nature, vol. 556, no. 7701, pp. 355-359, 2018.
[39] 維基百科編者, "化學氣相沉積," in 維基百科,自由的百科全書, ed, 2022.
[40] Granite. "What is Raman Spectroscopy?" https://www.edinst.com/fr/blog/what-is-raman-spectroscopy/ .
[41] 維基百科編者, "光學顯微鏡," in 維基百科,自由的百科全書, ed, 2022.
[42] M. Sharma, A. Singh, and R. Singh, "Monolayer MoS2 transferred on arbitrary substrates for potential use in flexible electronics," ACS Applied Nano Materials, vol. 3, no. 5, pp. 4445-4453, 2020.
[43] M. Buscema, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, "The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2," Nano research, vol. 7, no. 4, pp. 561-571, 2014.
[44] A. Castellanos-Gomez et al., "Local strain engineering in atomically thin MoS2," Nano letters, vol. 13, no. 11, pp. 5361-5366, 2013.
[45] Y. Y. Hui et al., "Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet," ACS nano, vol. 7, no. 8, pp. 7126-7131, 2013.
[46] L. Zhang et al., "Damage-free and rapid transfer of CVD-grown two-dimensional transition metal dichalcogenides by dissolving sacrificial water-soluble layers," Nanoscale, vol. 9, no. 48, pp. 19124-19130, 2017.
[47] C. Rice et al., "Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS 2," Physical Review B, vol. 87, no. 8, pp. 081307, 2013.
[48] N. Barreau, J. Bernède, J. Pouzet, M. Guilloux‐Viry, and A. Perrin, "Characteristics of photoconductive MoS2 films grown on NaCl substrates by a sequential process," physica status solidi (a), vol. 187, no. 2, pp. 427-437, 2001.
[49] L. Chen, L. Zang, L. Chen, J. Wu, C. Jiang, and J. Song, "Study on the catalyst effect of NaCl on MoS 2 growth in a chemical vapor deposition process," CrystEngComm, vol. 23, no. 31, pp. 5337-5344, 2021.
[50] Z. Wang et al., "NaCl-assisted one-step growth of MoS2–WS2 in-plane heterostructures," Nanotechnology, vol. 28, no. 32, pp. 325602, 2017.
[51] Y. Shi et al., "Na-assisted fast growth of large single-crystal MoS2 on sapphire," Nanotechnology, vol. 30, no. 3, pp. 034002, 2018.
[52] A. Singh, M. Sharma, and R. Singh, "NaCl-Assisted CVD Growth of Large-Area High-Quality Trilayer MoS2 and the Role of the Concentration Boundary Layer," Crystal Growth & Design, vol. 21, no. 9, pp. 4940-4946, 2021.
[53] Z. Zhu, S. Zhan, J. Zhang, G. Jiang, M. Yi, and J. Wen, "Influence of growth temperature on MoS2 synthesis by chemical vapor deposition," Materials Research Express, vol. 6, no. 9, pp. 095011, 2019.
[54] J. Li et al., "The degradation of CVD-grown MoS2 domains in atmospheric environment," Materials Letters, vol. 290, pp. 129421, 2021.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2022-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明