博碩士論文 105682604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.142.171.180
姓名 阮光明(Quang Minh Nguyen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣北部外海碰撞後期區域自中新世晚期以來的構造沉積演化過程
(Tectono-sedimentary evolution of the post-collision area off northern Taiwan since late Miocene)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣造山帶的形成被認為是源自於菲律賓海板塊的呂宋島弧與歐亞大陸板塊之間傾斜碰撞的結果,過程中許多關於弧陸碰撞的紀錄被完好地保留下來,為全世界的碰撞帶研究提供了一個特殊的研究場域。多數研究者認為隨著時間演進,台灣的造山過程可藉由一條由北到南的剖面來表示碰撞過程的不同演化階段:位於台灣北部海域、沖繩海槽最南端、琉球隱沒系統的碰撞後期階段(post-collision stage);位於中台灣的碰撞階段(collision stage);以及位於馬尼拉隱沒帶北邊的碰撞前期階段(pre-collision stage)。其中關於台灣北部海域,雖然前人普遍認同該區域的張裂構造環境,但對於該區域的地質演化過程卻缺少整體的認知。本研究透過多頻道反射震測及既有鑽井資料所建構起來的層序與變形解釋,建構出台灣北部海域從擠壓到張裂各個階段的構造演化模型,在該模型的基礎上,我們將研究區域劃分為兩塊具有不同構造環境的區域:為台灣造山帶的一部分,經歷造山階段並轉變為張裂垮塌階段的垮塌造山帶(collapsed zone);與相對穩定,既非碰撞也非張裂階段的陸棚盆地(shelf basin)。陸棚盆地與垮塌造山帶之間被一條與陸上山腳斷層相連的斷層分隔,我們稱之為「海域山腳斷層(Offshore Shanjiao Fault)」。在6百萬年以前,垮塌造山帶屬於東海陸棚盆地的一部分,當呂宋島弧北端與歐亞大陸邊緣於台灣北部海域碰撞時,海域山腳斷層為整個系統最西北邊的逆衝斷層,也就是古台灣造山帶的逆衝前緣邊界。此時歐亞大陸邊緣因持續受到菲律賓海板塊的聚合擠壓而縮短增厚,進而產生了一系列的東北-西南走向的逆衝斷層,如野柳斷層、崁腳斷層-F1、台北斷層-F2、新店斷層-F3等,接著並形成數條西北-東南走向的右移走向滑移斷層,以調節造山帶兩側區塊之間的應力差。當碰撞造山運動由東北往西南方向遷移後,台灣北部海域地殼便失去了擠壓應力的支持,進而轉變為地殼拉張的環境,並在大約2.6百萬年前形成垮塌造山帶。向台灣西南方向逐漸變淺的基底不整合面也意味著台灣北部海域的拉張系統開始由東北往西南方向推進。而既存的東北-西南走向逆衝斷層(海域山腳斷層、野柳斷層、F1、F2、F3)也開始在垮塌造山帶內轉變為傾動地塊(tilted block faulting),形成一系列半地塹構造。而沿著F4及F5的地區則形成轉換拉張帶(transtensional zone),促成了西北-東南走向的海底峽谷發育。由於碰撞後期陷落與南沖繩海槽張裂的雙重影響,拉張區域持續演進成為現今的台灣北部區域,許多鄰近海域山腳斷層的活動斷層表示拉張活動並不僅發生於南沖繩海槽的弧後盆地,也同時存在於中國大陸邊緣區域。
摘要(英) The Taiwan mountain belt is known as a result of the oblique collision between the Luzon arc of the Philippine Sea Plate and the Eurasian Plate, where some of the best records on arc-continent collision have been preserved. It thus offers a unique example for the study of collision belts worldwide. Most authors suggest that the mountain building has evolved through time and could be represented by a series of cross-sections from north to south as the following stages: the post-collision stage in the offshore area of northern Taiwan, southernmost Okinawa Through and Ryukyu subduction system; the collisional stage in middle Taiwan; and the pre-collision stage in the northern Manila subduction zone. Although the extensional tectonism in northern offshore Taiwan is generally agreed, a holistic understanding of its geological evolution is lacking. Based on the interpretation of stratigraphy and deformation from multi-channel seismic profiles and the existing borehole data, we use the geological features above to construct the tectonic history of the area off northern Taiwan from the compressional to extensional stages. On the basis of the model, we divided into two regions with different tectonic events: The collapsed zone is the part of the Taiwan mountain belt during the collision stage and become to collapse during the extensional stage. Whereas, the shelf basin is quite stable and involves neither collision nor extensional stage. The shelf basin and the collapsed zone are distinguished by a fault that is connected to the onshore Shanjiao Fault, which is named as Offshore Shanjiao Fault. Before 6 Ma, the collapsed zone was a part of the East China Sea shelf basin. When the northern tip of the Luzon arc collided with the Eurasian continental margin off northern Taiwan, the Offshore Shanjiao Fault is a northwesternmost thrust fault and is known as a frontal thrust boundary of the proto-Taiwan mountain belt. The Eurasian continental margin continued to be shortened and thickened by the converging Philippine Sea plate, forming several NE-SW trending thrust faults such as Yehliu Fault, Kanjiao Fault – F1, Taipei Fault – F2, Hsintien Fault – F3, and so on. NW-SE trending dextral strike-slip faults also formed to accommodate the differential stresses on both sides of the belt segments. When the collisional orogen migrates from NE to SW direction, the crust has lost its compressional support and becomes an area of crustal stretching, forming collapsed zone at ~2.6 Ma. The southwestwardly shallowing of Basal Unconformity surface toward Taiwan implies that the extensional regime has propagated from NE to SW direction in offshore northern Taiwan. The pre-existing NE-SW trending thrust faults (Offshore Shanjiao Fault, Yehliu Fault, F1, F2, and F3) became tilted block faulting in the collapsed zone, forming a series of half-grabens. The area along the F4 and F5 becomes transtensional zones, facilitating the development of the NW-SE trending submarine canyons. Due to both post-collisional subsidence and rifting of the southern Okinawa Trough, the extensional regime continues to propagate to present-day northern Taiwan. Several active faults occur near the Offshore Shanjiao Fault, indicating that the active rifting not only exists in the back-arc basin of the southern Okinawa Trough but also in Chinese continental margin.
關鍵字(中) ★ 台灣北部近海
★ 坍塌
★ 反射地震
★ 沖繩海槽
關鍵字(英) ★ Offshore northern Taiwan
★ Collapse
★ Reflection seismic
★ Okinawa Trough
論文目次 摘要 i
Abstract iii
Acknowledgments v
Table of Contents vi
List of Figures viii
List of Tables x
Explanation of Symbol xi
Chapter 1: Introduction 1
Chapter 2: Geological background and regional structure 11
2.1. Bathymetric features 11
2.2. Tectonic setting 13
2.3. Structural domain 14
Chapter 3: Data and methods 20
3.1. Data Collection and Acquisition 20
3.2. Workflow 21
3.3. Multi-channel seismic processing steps 21
3.3.1. Site survey cruise configuration 22
3.3.2. Input data and trace editing 23
3.3.3. Frequency filter 23
3.3.4. 2D marine geometry 24
3.3.5. Normal moveout, velocity analysis, and stacking 24
3.3.6. Predictive deconvolution 26
3.3.7. Multiple attenuations 26
3.3.8. Post-stack migration 28
3.3.9. Time/Depth conversion 29
3.3.10. SEG-Y output 30
Chapter 4: Seismic stratigraphic analysis and interpretation 47
4.1. Seismic to borehole correlation 47
4.2. Unit-boundaries 48
4.2.1. Eocene–Oligocene boundary: Post-rift unconformity (PRU) 49
4.2.2. Miocene–Pliocene boundary (R5) 49
4.2.3. Pliocene–Quaternary boundary (R6) 50
4.2.4. Miocene–Quaternary boundary: Basal unconformity (BU) 50
4.3. Stratigraphic units 51
4.3.1. Eocene series: Seismic unit C 51
4.3.2. Oligocene–Miocene series: Seismic unit D 52
4.3.3. Pliocene series: Seismic unit E 53
4.3.4. Quaternary series: Seismic unit F 53
Chapter 5: Fault systems and the Offshore Shanjiao Fault 64
5.1. NE-SW trending fault system 64
5.2. NW-SE trending fault system 66
5.3. Fault system map 67
Chapter 6: Discussion 80
6.1. The significance of the stratigraphic units 80
6.2. Fault systems 80
6.3. Tectonic evolution model 82
6.3.1. 6 Ma reconstruction 82
6.3.2. 4 Ma reconstruction 83
6.3.3. 2 Ma reconstruction 83
6.3.4. Present-day configuration 84
6.4. Limitations and future research 85
Chapter 7: Conclusion 90
References 92
參考文獻 Amante, C. and Eakins, B.W., "ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis", NOAA Technical Memorandum NESDIS NGDC-24, 2009, 19 p.
Barrier, E. and Angelier, J., "Active collision in eastern Taiwan: the coastal range", Tectonophysics, Vol. 125, 1986, pp. 39–72.
Blackie, A.M., Carlsen, C.T., Reed, K.J. and Perez-Roca, E., "Offshore Taiwan - East China Sea Block-C, Laohu-1x Wildcat (YCL-1) Completion Report", Gulf Oil Company of China, Taiwan Branch, 1975, 35 p.
Boggs, J.S., Wang, W.C., Lewis, F.S. and Chen, J.C., "Sediment properties and water characteristics of the Taiwan shelf and slope", Acta Oceanogr. Taiwanica, Vol. 10, 1979, pp. 10–49.
Chang, J.H., Yang, E.Y.C., Hsu, H.H., Chen, T.T., Liu, C.S. and Chiu, S.D., "Igneous activity and structural development of the mianhua terrace, offshore North Taiwan", Minerals, Vol. 11, 2021, pp. 1–19.
Chang, J.H., Yang, E.Y.C., Hsu, H.H., Su, C.C., Liu, C.S., Chiu, S.D., Ma, Y.F., Li, Y.W., Lin, Y.C. and Shen, J. Sen, Seismic Stratigraphic Features of the Late Miocene-Present Unconformities and Related Seismic Units, Northern Offshore Taiwan, In: Aiello, G. (ed.), Seismic and Sequence Stratigraphy and Integrated Stratigraphy - New Insights and Contributions, IntechOpen, 2017.
Chang, S.L. and Chi, W.R., "Neogene nanoplankton biostratigraphy in Taiwan and the tectonic implications", Pet. Geol. Taiwan, Vol. 19, 1983, pp. 93–147.
Duarte, J.C. and Schellart, W.P. (eds.), Plate Boundaries and Natural Hazards, American Geophysical Union, 2016.
Foster, D.J. and Mosher, C.C., "Suppression of multiple reflections using the Radon transform", Geophysics, Vol. 57, 1992.
Hall, R., "Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations", J. Asian Earth Sci., Vol. 20, 2002, pp. 353–431.
Hsiao, L.-Y., Lin, K.-A., Huang, S.T. and Teng, L.S., "Structural characteristics of the southern Taiwan-Sinzi folded zone", Pet. Geol. Taiwan, Vol. 32, 1998, pp. 133–153.
Hsu, S.K. and Sibuet, J.C., "Is Taiwan the result of arc-continent or arc-arc collision?", Earth Planet. Sci. Lett., Vol. 136, 1995, pp. 315–324.
Hsu, S.K., Sibuet, J.C., Monti, S., Shyu, C.T. and Liu, C.S., "Transition between the Okinawa Trough backarc extension and the Taiwan collision: New insights on the southernmost Ryukyu subduction zone", Mar. Geophys. Res., Vol. 18, 1996, pp. 163–187.
Hsu, S.K., Sibuet, J.C. and Shyu, C.T., "Magnetic inversion in the East China Sea and Okinawa Trough: Tectonic implications", Tectonophysics, Vol. 333, 2001, pp. 111–122.
Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P.B., Lin, C.-W. and Xia, K.-Y., "Tectonic evolution of the accretionary prism in the arc continent-collision terrane of Taiwan", Tectonophysics, Vol. 281, 1997, pp. 31–51.
Kimura, M., "Back-arc rifting in the Okinawa Trough", Mar. Pet. Geol., Vol. 2, 1985, pp. 222–240.
Knödel, K., Lange, G. and Voigt, H.-J. (eds.), Environmental Geology, Springer Link, 2007.
Kong, F., Lawver, L.A. and Lee, T.Y., "Evolution of the southern Taiwan-Sinzi Folded Zone and opening of the southern Okinawa trough", J. Asian Earth Sci., Vol. 18, 2000, pp. 325–341.
Lee, Y.H., Byrne, T., Wang, W.H., Lo, W., Rau, R.J. and Lu, H.Y., "Simultaneous mountain building in the Taiwan orogenic belt", Geology, Vol. 43, 2015, pp. 451–454.
Letouzey, J. and Kimura, M., "Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent", Mar. Pet. Geol., Vol. 2, 1985, pp. 111–130.
Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J. and Wu, M.S., "Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan", Mar. Geol., Vol. 255, 2008, pp. 186–203.
Lu, C.-Y. and Hsu, K.J., "Tectonic evolution of the Taiwan mountain belt", Pet. Geol. Taiwan, Vol. 27, 1992, pp. 21–46.
Malavieille, J., Lallemand, S.E., Dominguez, S., Deschamps, A., Lu, C.Y., Liu, C.S. and Schnürle, P., "Arc-continent collision in Taiwan: New marine observations and tectonic evolution", Spec. Pap. Geol. Soc. Am., Vol. 358, 2002, pp. 187–211.
Mitchum, R.M., Vail, P.R. and Thompson, S., Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis, In: Payton, C.E. (ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration, American Association of Petroleum Geologist U.S.A, 1977.
Seno, T., Stein, S. and Gripp, A.E., "A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data", J. Geophys. Res., Vol. 98, 1993.
Sibuet, J.-C., Deffontaines, B., Hsu, S.-K., Thareau, N., Le Formal, J.-P. and Liu, C.-S., "Okinawa trough backarc basin: Early tectonic and magmatic evolution", J. Geophys. Res. Solid Earth, Vol. 103, 1998, pp. 30245–30267.
Sibuet, J.-C., Hsu, S.-K., Shyu, C.-T. and Liu, C.-S., Structural and kinematic evolution of the Okinawa Trough back-arc basin, In: Taylor, B. (ed.), Back-arc Basins: Tectonics and Magmatism, Plenum, New York, 1995.
Sibuet, J.C. and Hsu, S.K., "How was Taiwan created?", Tectonophysics, Vol. 379, 2004, pp. 159–181.
Sibuet, J.C., Hsu, S.K., Le Pichon, X., Le Formal, J.P., Reed, D., Moore, G. and Liu, C.S., "East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region", Tectonophysics, Vol. 344, 2002, pp. 103–134.
Song, G.S., Chang, Y.C. and Ma, C.P., "Characteristics of submarine topography off northern Taiwan", Terr. Atmos. Ocean. Sci., Vol. 8, 1997, pp. 461–480.
Song, G.S., Ma, C.P. and Yu, H.S., "Fault-controlled genesis of the Chilung Sea Valley (northern Taiwan) revealed by topographic lineaments", Mar. Geol., Vol. 169, 2000, pp. 305–325.
Sun, S.-C., "The Cenozoic tectonic evolution of offshore Taiwan", Energy, Vol. 10, 1985, pp. 421–432.
Suppe, J., "Continent collision, flipping of sub- duction, and back-arc spreading near Taiwan.", Mem. Geol. Soc. China, Vol. 6, 1984, pp. 21–33.
Sylvester, A.G., "Strike-Slip Faults", Geol. Soc. Am. Bull. 100, Vol. 11, 1988, pp. 1666–1703.
Teng, L.S., "Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan", Tectonophysics, Vol. 183, 1990, pp. 67–76.
Teng, L.S., "Extensional collapse of the northern Taiwan mountain belt", Geology, Vol. 24, 1996, pp. 949.
Teng, L.S., Lee, C.T., Peng, C.H., Chen, W.F. and Chu, C.J., "Origin and geological evolution of the Taipei Basin, northern Taiwan", West. Pacific Earth Sci., Vol. 1, 2001, pp. 115–142.
Teng, L.S., Lee, C.T., Tsai, Y.B. and Hsiao, L.Y., "Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan", Geology, Vol. 28, 2000, pp. 155–158.
Teng, L.S. and Lin, A.T., "Cenozoic tectonics of the China continental margin: Insights from Taiwan", Geol. Soc. Spec. Publ., Vol. 226, 2004, pp. 313–332.
Tsai, C.H., Huang, C. Lo, Hsu, S.K., Doo, W. Bin, Lin, S.S., Wang, S.Y., Lin, J.Y. and Liang, C.W., "Active normal faults and submarine landslides in the Keelung Shelf off NE Taiwan", Terr. Atmos. Ocean. Sci., Vol. 29, 2018, pp. 31–38.
Twiss, R.J. and Moores, E.M. (eds.), Structural Geology, New York: W.H. Freeman and Company, 1992.
Vail, P.R. and Mitchum, R.M., Seismic stratigraphy and global changes of sea level,Part 1: overview, In: Payton, C.E. (ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration, American Association of Petroleum Geologist U.S.A, 1977.
Wang, B., Doust, H. and Liu, J., "Geology and petroleum systems of the East China sea basin", Energies, Vol. 12, 2019.
Wang, K.L., Chung, S.L., O’Reilly, S.Y., Sun, S.S., Shinjo, R. and Chen, C.H., "Geochemical constraints for the Genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region", J. Petrol., Vol. 45, 2004, pp. 975–1011.
Wiggins, J.W., "Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction", Geophysics, Vol. 53, 1988, pp. 1527–1539.
Yang, C.C., Yu, M.R. and Su, D.F., "Subsurface geology well report of YAC-1", Geology Department, Offshore Exploration Division, Chinese Petroleum Corporation, 1985, 40 p.
Yu, H.S. and Song, G.S., "Submarine physiographic features in Taiwan region and their geological significance", J. Geol. Soc. China, Vol. 43, 2000, pp. 267–286.
Yu, S.B., Chen, H.Y. and Kuo, L.C., "Velocity field of GPS stations in the Taiwan area", Tectonophysics, Vol. 274, 1997, pp. 41–59.
Zhou, Z., Zhao, J. and Yin, P., "Characteristics and tectonic evolution of the East China Sea", Chinese Sediment. basins, Vol. 1, 1989, pp. 165–179.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明