博碩士論文 109327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.133.155.235
姓名 張峻瑞(Chun-Jui Chang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 基於慣性聚焦之微粒分析技術
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對塑膠微粒設計一矩形橫截面之螺旋流道,透過流體的慣性聚焦使不同尺寸的粒子在螺旋型流道中分離。由於粒子在流道中的聚焦位置與其大小有關,本實驗也對慣性聚焦原理進行深入的探討與計算。此外,本流道設計在出口部分額外增加 PZT 壓電材料,利用聲波所產生的聲輻射力作用在粒子上,提高分離的效率及分離尺寸範圍。最後,本實驗以電容式量測對分離後的粒子溶液進行分析,發現溶液中粒子濃度越高,電容值的變化量越大。
摘要(英) This study designs a spiral flow channel with a rectangular cross-section for plastic particles. Particles are separated in the spiral flow channel through the inertial focusing of the fluid. Since the focusing position of the particles in the flow channel is related to its size, the principle of inertial focusing is also discussed and calculated in this experiment. In addition, at outlet part of the flow channel, we install piezoelectric material. Using the acoustic radiation force generated by the acoustic wave that acting on the particles to improve the separation efficiency and the separation size range. Finally, in this experiment, the separated particle solution was analyzed by capacitive measurement. It was found that the higher the particle concentration in the solution, the greater change in capacitance value.
關鍵字(中) ★ 慣性聚焦
★ 粒子分離
★ 聲波
關鍵字(英) ★ Inertial focusing
★ Particle separation
★ Acoustic wave
論文目次 目錄
摘要........................................................................................................................i
ABSTRACT..........................................................................................................ii
目錄......................................................................................................................iii
圖目錄................................................................................................................... v
表目錄................................................................................................................viii
第一章 緒論......................................................................................................... 1
1.1 前言........................................................................................................ 1
1.2 研究動機................................................................................................ 1
1.3 文獻回顧................................................................................................ 2
第二章 基礎理論................................................................................................. 7
2.1 慣性聚焦原理........................................................................................ 7
2.2 駐波理論.............................................................................................. 14
2.3 聲幅射力.............................................................................................. 15
2.4 電容感測器原理.................................................................................. 17
2.4.1 介電常數................................................................................... 18
2.5 等效介質理論...................................................................................... 19
第三章 實驗設計............................................................................................... 21
3.1 實驗方法.............................................................................................. 21
3.2 實驗設備與材料.................................................................................. 23
3.3 流道元件製作...................................................................................... 26
3.4 電容感測器設計.................................................................................. 27
3.5 實驗模擬與設計.................................................................................. 29
3.5.1 模擬環境設定........................................................................... 29
3.5.2 流道速度分布模擬................................................................... 30
第四章 實驗結果與討論................................................................................... 34
4.1 實驗流程.............................................................................................. 34
4.2 實驗結果.............................................................................................. 36
4.2.1 粒子流動軌跡........................................................................... 36
4.2.2 電容值量測結果....................................................................... 38
4.3 實驗討論彙整...................................................................................... 46
4.3.1 慣性聚焦理論計算與討論....................................................... 46
4.3.2 外加聲泳之流動軌跡討論....................................................... 50
4.3.3 等效介質理論計算................................................................... 52
第五章 結論....................................................................................................... 54
參考文獻............................................................................................................. 55
參考文獻 [1] S. L. Wright and F. J. Kelly, "Plastic and Human Health: A Micro Issue?," Environ Sci Technol, vol. 51, no. 12, pp. 6634-6647, Jun 20 2017.
[2] Y. Chen, M. Wu, L. Ren, J. Liu, P. H. Whitley, L. Wang and T. J. Huang, "High-throughput acoustic separation of platelets from whole blood," Lab Chip, vol. 16, no. 18, pp. 3466-3472, Sep 21 2016.
[3] J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab Chip, vol. 9, no. 23, pp. 3354-3359, Dec 7 2009.
[4] S. S. Kuntaegowdanahalli, A. A. Bhagat, G. Kumar, and I. Papautsky, "Inertial microfluidics for continuous particle separation in spiral microchannels," Lab Chip, vol. 9, no. 20, pp. 2973-2980, Oct 21 2009.
[5] J. Zhou, P. V. Giridhar, S. Kasper, and I. Papautsky, "Modulation of aspect ratio for complete separation in an inertial microfluidic channel," Lab Chip, vol. 13, no. 10, pp. 1919-1929, May 21 2013.
[6] A. J. Mach and D. Di Carlo, "Continuous scalable blood filtration device using inertial microfluidics," Biotechnol Bioeng, vol. 107, no. 2, pp. 302-311, Oct 1 2010.
[7] M. E. Warkiani et al., "Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells," Lab Chip, vol. 14, no. 1, pp. 128-137, Jan 7 2014.
[8] A. Schaap, J. Dumon, and J. d. Toonder, "Sorting algal cells by morphology in spiral microchannels using inertial microfluidics," Microfluidics and Nanofluidics, vol. 20, no. 9, p. 125, 2016.
[9] A. S. G. Segré, "Radial Particle Displacements in Poiseuille Flow of Suspensions," Nature, vol. 189, no. 4760, pp. 209-210, 1961.
[10] A. J. Chung, "A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow," BioChip Journal, vol. 13, no. 1, pp. 53-63, 2019.
[11] D. I. Dino Di Carlo, Ronald G. Tompkins, and Mehmet Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892-18897, 2007.
[12] Y. Gou, Y. Jia, P. Wang, and C. Sun, "Progress of Inertial Microfluidics in Principle and Application," Sensors (Basel), vol. 18, no. 6, p. 1762, 2018.
[13] A. A. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, "Continuous particle separation in spiral microchannels using Dean flows and differential migration," Lab Chip, vol. 8, no. 11, pp. 1906-1914, 2008.
[14] D. Di Carlo, "Inertial microfluidics," Lab Chip, vol. 9, no. 21, pp. 3038-46, Nov 7 2009.
[15] N. Nivedita, P. Ligrani, and I. Papautsky, "Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels," Sci Rep, vol. 7, p. 44072, M2017.
[16] S. Ookawara, R. Higashi, D. Street, and K. Ogawa, "Feasibility study on concentration of slurry and classification of contained particles by microchannel," Chemical Engineering Journal, vol. 101, no. 1-3, pp. 171-178, 2004.
[17] A. Dinler and I. Okumus, "Inertial particle separation in curved networks: A numerical study," Chemical Engineering Science, vol. 182, pp. 119-131, 2018.
[18] L. V. King, "On the acoustic radiation pressure on spheres," Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 147, no. 861, pp. 212-240, 1997.
[19] A. A. Doinikov, "Acoustic radiation pressure on a compressible sphere in a viscous fluid," Journal of Fluid Mechanics, vol. 267, pp. 1-22, 2006.
[20] L. P. Gor’kov, "On the Forces acting on a small particle in an acoustical field in an ideal fluid," Soviet Physics Doklady, vol. 6, p. 773, 1962.
[21] H. Bruus, "Acoustofluidics 7: The acoustic radiation force on small particles," Lab Chip, vol. 12, no. 6, pp. 1014-21, Mar 21 2012.
[22] M. Scheller, S. Wietzke, C. Jansen, C. Jordens, M. Lehnhardt, and M. Koch, "Applications for effective medium theories in the terahertz regime," presented at the 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009.
[23] V. Z. L. A.V. Goncharenko and E. F. Venger, "Lichtenecker′s equation applicability and limitations," Optics Communications, vol. 174, no. 2000, pp. 19-32, 2000.
[24] G. G. Raju, "Dielectrics in electric fields," 2017.
[25] H. LOOYENGA, "Dielectric constants of heterogeneous mixtures," Physica, vol. 31, no. 3, pp. 401-406, 1965.
[26] B. Miller, M. Jimenez, and H. Bridle, "Cascading and Parallelising Curvilinear Inertial Focusing Systems for High Volume, Wide Size Distribution, Separation and Concentration of Particles," Scientific Reports, vol. 6, no. 1, p. 36386, 2016.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明