博碩士論文 109226071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.145.56.59
姓名 林佳霈(Jia-Pei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 相位式侷域表面電漿共振感測器之開發
(Development of Phase-Sensitive Localized Surface Plasmon Resonance Sensor)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-7以後開放)
摘要(中) 本研究利用掃描式白光干涉顯微技術,搭配快速傅立葉轉換法(Fast Fourier Transform, FFT),將時域干涉訊號轉換為頻域資訊,取得二維空間影像之相位頻譜,應用於侷域表面電漿共振效應(Localized Surface Plasmon Resonance, LSPR)感測器之開發,藉由量測相位共振波長,來避免傳統直接量測強度時易受到的環境干擾。
相位頻譜之金奈米粒子,以金奈米粒子的LSPR吸收光譜之特徵峰值位置的共振波長作為識別;LSPR相位分布強度機率圖則用來確認金奈米粒子相位出現機率與各濃度之間差異性,並引入質心演算法(Spectral Centroid Algorithm)來量化此現象。
藉由觀察LSPR 特徵峰值來分析不同濃度之間的變化,所量測濃度之檢測極限(Limit of Detection, LOD)為0.1485%,意即本系統可以偵測到 〖6.5955×10〗^10 〖mL〗^(-1) 個金奈米粒子。這證實了本研究內所開發的白光干涉顯微成像系統之創新技術可用於量測LSPR感測器相位頻譜之開發,實現大範圍且快速量測分析之檢測平台。期望未來可將本研究應用在發展一套精準、可靠、高靈敏度的多重偵測平台,並實現多重偵測之光學感測技術。
摘要(英) In this study, scanning white light interference microscopy with Fast Fourier Transform (FFT) which can convert the time domain interference signal into frequency domain information and obtain the phase spectrum of the two-dimensional spatial image, was applied to the development of a localized surface plasmon resonance (LSPR) sensor. By measuring the phase resonance wavelength, the environmental interference that is susceptible to traditional direct measurement of intensity can be avoided.
The resonance wavelength of the characteristic peak position of the LSPR absorption spectrum of gold nanoparticles is used as the identification and analysis of the phase spectrum. The LSPR phase distribution intensity probability map was used to confirm the phase repeatability and the difference between concentrations of the gold nanoparticles. A spectral centroid algorithm was introduced to quantify this phenomenon.
By observing the characteristic peaks of LSPR to analyze the change between different concentrations, the limit of detection (LOD) of the measured concentration is 0.1485%, which means that 〖6.5955×10〗^10 〖mL〗^(-1) gold nanoparticles can be detected by the system. This result confirms that the innovative technique of the white light interference microscopy imaging system developed in this study can be used to measure the phase spectrum of the LSPR sensor, and also provide a detection platform with high sensitivity and fast speed. It is expected that this research can be applied to develop a set of accurate, reliable and high-sensitivity multiple detection platforms in the future and realize the optical sensing technology of multiple detection.
關鍵字(中) ★ 生物檢測技術
★ 白光干涉顯微技術
★ 侷域表面電漿共振
★ 白光干涉儀
★ 金奈米粒子
關鍵字(英) ★ Localized surface plasmon resonance
★ White-Light Scanning Interferometry
★ Gold nanoparticles
★ biosensor
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的與動機 5
第二章 基礎理論 6
2-1 白光干涉顯微技術理論 6
2-1-1 白光干涉顯微技術 7
2-1-2 相移式干涉技術 11
2-1-3 垂直掃描式干涉技術 13
2-2 侷域表面電漿共振理論 17
2-2-1 侷域表面電漿共振簡介 17
2-2-2 侷域表面電漿共振效應 18
第三章 實驗架構與研究方法 21
3-1 實驗架構 21
3-2 實驗流程 24
3-3 研究方法 27
3-3-1 反射式相位頻譜量測 27
3-3-2 金奈米棒粒子分佈 28
3-3-3 LSPR相位分佈強度機率 30
3-3-4 質心演算法 (Spectral Centroid Algorithm) 31
3-3-5 靈敏度 (Sensitivity) 32
3-3-6 S型劑量反應曲線 (Sigmoidal Dose-response Curves) 33
第四章 實驗結果與討論 34
4-1 系統穩定性 34
4-1-1 白光干涉顯微成像系統 34
4-1-2 光源穩定性 35
4-1-3 CCD穩定性 36
4-2 實驗結果討論 37
4-2-1 金奈米棒LSPR相位頻譜之再現性與穩定性 38
4-2-2 金奈米棒不同濃度相位頻譜量測分析 41
第五章 結論 49
參考文獻 50
參考文獻 [1] P. J. Tighe, R. R. Ryder, I. Todd, and L. C. Fairclough, "ELISA in the multiplex era: potentials and pitfalls," PROTEOMICS–Clinical Applications, vol. 9, no. 3-4, pp. 406-422, 2015.
[2] R. L. Rich, "Higher-throughput, label-free, real-time molecular interaction analysis," Analytical biochemistry, vol. 361, pp. 1-6, 2007.
[3] 章嘉明, 李佳瑜, 江昌獄, and 周禮君, "免標定生物感測器," 科儀新知, no. 175, pp. 48-55, 2010.
[4] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.
[5] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 28, 2006.
[6] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical review, vol. 106, no. 5, pp. 874, 1957.
[7] 張家瑜、賴英煌, "表面電漿現象及其應用," 科學發展, pp. 66~71, 2019.
[8] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," vol. 107, ed: ACS Publications, 2003, pp. 668-677.
[9] X. Huang and M. A. El-Sayed, "Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy," Journal of advanced research, vol. 1, no. 1, pp. 13-28, 2010.
[10] L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, "Strategies for enhancing the sensitivity of plasmonic nanosensors," Nano Today, vol. 10, no. 2, pp. 213-239, 2015.
[11] G. J. Nusz et al., "Label-free plasmonic detection of biomolecular binding by a single gold nanorod," Analytical chemistry, vol. 80, no. 4, pp. 984-989, 2008.
[12] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 308-319, 2010.
[13] J. Chen et al., "Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles," Sensors, vol. 15, no. 6, pp. 12205-12217, 2015.
[14] G. Nenninger, P. Tobiška, J. Homola, and S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 145-151, 2001.
[15] W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale, vol. 5, no. 20, pp. 9950-9956, 2013.
[16] K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications," Plasmonics, vol. 8, no. 3, pp. 1379-1385, 2013.
[17] R. S. Moirangthem, M. T. Yaseen, P.-K. Wei, J.-Y. Cheng, and Y.-C. Chang, "Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements," Biomedical optics express, vol. 3, no. 5, pp. 899-910, 2012.
[18] R. W. Wood, Physical optics. Macmillan, 1905.
[19] M.-C. Li, D.-S. Wan, and C.-C. Lee, "Application of white-light scanning interferometer on transparent thin-film measurement," Applied Optics, vol. 51, no. 36, pp. 8579-8586, 2012.
[20] M. Roy, I. Cooper, P. Moore, C. J. Sheppard, and P. Hariharan, "White-light interference microscopy: effects of multiple reflections within a surface film," Optics Express, vol. 13, no. 1, pp. 164-170, 2005.
[21] S. S. Chim and G. S. Kino, "Phase measurements using the Mirau correlation microscope," Applied optics, vol. 30, no. 16, pp. 2197-2201, 1991.
[22] J. Niehues, P. Lehmann, and W. Xie, "Low coherent Linnik interferometer optimized for use in nano-measuring machines," Measurement Science and Technology, vol. 23, no. 12, pp. 125002, 2012.
[23] P. Hariharan, Basics of interferometry. Elsevier, 2010.
[24] K. Creath and G. Goldstein, "Dynamic phase imaging and processing of moving biological organisms," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIX, 2012, vol. 8227: SPIE, pp. 106-115.
[25] Y. Surrel, "Phase stepping: a new self-calibrating algorithm," Applied optics, vol. 32, no. 19, pp. 3598-3600, 1993.
[26] J. Schwider, O. R. Falkenstoerfer, H. Schreiber, A. Zoeller, and N. Streibl, "New compensating four-phase algorithm for phase-shift interferometry," Optical Engineering, vol. 32, no. 8, pp. 1883-1885, 1993.
[27] N. Ida and N. Meyendorf, Handbook of advanced nondestructive evaluation. Springer International Publishing Cham, Switzerland, 2019.
[28] A. S. Arcas, L. Jaramillo, N. S. Costa, R. C. S. Allil, and M. M. Werneck, "Localized surface plasmon resonance-based biosensor on gold nanoparticles for Taenia solium detection," Applied Optics, vol. 60, no. 26, pp. 8137-8144, 2021.
[29] S. Farooq, F. Wali, D. M. Zezell, R. E. de Araujo, and D. Rativa, "Optimizing and Quantifying Gold Nanospheres Based on LSPR Label-Free Biosensor for Dengue Diagnosis," Polymers, vol. 14, no. 8, pp. 1592, 2022.
[30] Y. Hong, Y.-M. Huh, D. S. Yoon, and J. Yang, "Nanobiosensors based on localized surface plasmon resonance for biomarker detection," Journal of Nanomaterials, vol. 2012, 2012.
[31] A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer′s disease," Nano letters, vol. 4, no. 6, pp. 1029-1034, 2004.
[32] J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, "Localized surface plasmon resonance biosensors," 2006.
[33] Y. Hu, Y. Wen, and X. Wang, "Novel method of turbidity compensation for chemical oxygen demand measurements by using UV–vis spectrometry," Sensors and Actuators B: Chemical, vol. 227, pp. 393-398, 2016.
[34] D. Banham, S. Ye, S. Knights, S. M. Stewart, M. Wilson, and F. Garzon, "UV–visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells," Journal of Power Sources, vol. 281, pp. 238-242, 2015.
[35] O. A. Alsager, S. Kumar, B. Zhu, J. Travas-Sejdic, K. P. McNatty, and J. M. Hodgkiss, "Ultrasensitive colorimetric detection of 17β-estradiol: the effect of shortening DNA aptamer sequences," Analytical chemistry, vol. 87, no. 8, pp. 4201-4209, 2015.
[36] S. A. Khan, J. A. DeGrasse, B. J. Yakes, and T. R. Croley, "Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay," Analytica Chimica Acta, vol. 892, pp. 167-174, 2015.
[37] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual review of physical chemistry, vol. 58, no. 1, pp. 267-297, 2007.
[38] K. Takemura, "Surface plasmon resonance (SPR)-and localized SPR (LSPR)-based virus sensing systems: Optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology," Biosensors, vol. 11, no. 8, pp. 250, 2021.
[39] L. Panariello, A. N. Radhakrishnan, I. Papakonstantinou, I. P. Parkin, and A. Gavriilidis, "Particle Size Evolution during the Synthesis of Gold Nanoparticles Using In Situ Time-Resolved UV–Vis Spectroscopy: An Experimental and Theoretical Study Unravelling the Effect of Adsorbed Gold Precursor Species," The Journal of Physical Chemistry C, vol. 124, no. 50, pp. 27662-27672, 2020.
[40] J. Xavier, S. Vincent, F. Meder, and F. Vollmer, "Advances in optoplasmonic sensors–combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles," Nanophotonics, vol. 7, no. 1, pp. 1-38, 2018.
[41] E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, "Substrate effect on the refractive index sensitivity of silver nanoparticles," The Journal of Physical Chemistry C, vol. 118, no. 42, pp. 24680-24687, 2014.
[42] E. Martinsson, B. Sepulveda, P. Chen, A. Elfwing, B. Liedberg, and D. Aili, "Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles," Plasmonics, vol. 9, no. 4, pp. 773-780, 2014.
[43] Nanopartz, " Nanopartz Recommended Storage and Handling," ed, 2021.
[44] Nanopartz. https://www.nanopartz.com/gold_nanorods.asp.
[45] A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, "Improving the instrumental resolution of sensors based on localized surface plasmon resonance," Analytical chemistry, vol. 78, no. 13, pp. 4416-4423, 2006.
[46] F. Allegrini and A. C. Olivieri, "IUPAC-consistent approach to the limit of detection in partial least-squares calibration," Analytical chemistry, vol. 86, no. 15, pp. 7858-7866, 2014.
[47] H. M. Irving, H. Freiser, and T. S. West, Compendium of analytical nomenclature: definitive rules 1977. Elsevier, 2017.
[48] S. R. Gadagkar and G. B. Call, "Computational tools for fitting the Hill equation to dose–response curves," Journal of Pharmacological and Toxicological methods, vol. 71, pp. 68-76, 2015.
[49] J. G. Venegas, R. S. Harris, and B. A. Simon, "A comprehensive equation for the pulmonary pressure-volume curve," Journal of applied physiology, vol. 84, no. 1, pp. 389-395, 1998.
[50] W. t. t. L. T. Pages. https://theory.labster.com/dose-response/.
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2022-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明