博碩士論文 109226055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.15.146.27
姓名 王文儷(Wen-Li Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
(Zoomable lensless digital holographic microscope using volume holographic optical waveguides)
相關論文
★ N 倍繞射效率之體積全像多工技術★ 體積全像光學元件之波長及角度選擇性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 近年來,數位全像顯微技術(Digital Holographic Microscope,簡稱DHM)蓬勃的發展,具有高速相位成像、定量相位成像以及無損畫質之數位對焦等優勢,但目前市售之全像顯微鏡體積都過於龐大且昂貴,為此本論文提出使用體積全像光導元件結合數位全像顯微鏡,組成體積全像無透鏡數位全像顯微鏡(Volume Holographic Lensless Digital Holographic Microscope, VH-LDHM),並利用實驗成功的驗證本架構能成功的將傳統之傅氏轉換數位全像顯微鏡(Fourier Transform Digital Holographic Microscope, LFT-DHM)縮小化,其具有可微型化、高NA和光學變焦等優勢,使其擺脫昂貴光學顯微鏡與龐大體積的限制,以實現數位全像顯微鏡之可攜帶性。並且在縮小化之架構下,可以不改變物距,仍擁有可切換顯微鏡之放大率的功能,能夠在不同之視野範圍(Field of View,簡稱FOV)下,獲得互相對應的解析度(Resolution)。
摘要(英) In recent years, digital holographic microscopy has developed vigorously. It obtains the advantages of high-speed phase imaging, quantitative phase imaging and digital focusing without losing image quality. However, current commercially available holographic microscopes are too bulky and expensive. Therefore, this thesis proposed a volume holographic optical waveguide element combined with a digital holographic microscope to form a volume holographic lens-less digital holographic microscope. In the experiment, we successfully minimized the Lens-less Fourier Transform Digital Holographic Microscope which has the advantages of high NA, minimizable body and optical zoom. Instead of a heavy and expensive optical microscope, it can realize the portability of a digital holographic microscope. Furthermore, under such a minimized body, the ability of switching magnification of the microscope can be maintained without changing the object distance. In different fields of view, we can obtain the corresponding resolution.
關鍵字(中) ★ 數位全像顯微鏡
★ 體積全像無透鏡數位全像顯微鏡
★ 光波導
★ 視野範圍
★ 解析度
★ 微型化
關鍵字(英) ★ Digital Holographic Microscope
★ Volume Holographic Lensless Digital Holographic Microscope,
★ Optical Waveguides
★ Field of View
★ Resolution
★ Miniaturize
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 全像術簡介 1
1-2 數位全像術與數位全像顯微鏡 1
1-3 體積全像光學元件 3
1-4 研究動機 4
第二章 原理介紹 6
2-1 全像術 6
2-2 薄全像與厚全像 8
2-3 穿透式與反射式全像片 9
2-4 數位全像術之拍攝與重建 11
2-4-1 數位全像術之記錄限制 12
2-4-2 無透鏡傅氏轉換全像顯微術 14
2-4-3 角譜傳遞法 16
第三章 固定放大率之數位全像顯微鏡 18
3-1 無透鏡數位全像顯微鏡之理論介紹 18
3-2 體積全像光導元件製作 19
3-2-1 體積全像光學元件 HX200 20
3-2-2 VHOE#1之記錄架構及拍攝過程 22
3-2-3 VHOE#2之記錄架構 24
3-3 數位全像之影像擷取與重建 27
3-3-1 訊號圖案設計 28
3-3-2 拍攝數位全像顯微鏡之架構 31
3-3-3 數位全像之重建原理與方式 34
3-4 實驗結果與分析 39
第四章 可切換放大率之數位全像顯微鏡 42
4-1 體積全像光導元件製作 42
4-1-1 VHOE#2區域一之記錄架構 43
4-1-2 VHOE#2區域二之記錄架構 46
4-2 數位全像之影像擷取與重建 48
4-2-1 訊號圖案設計 48
4-2-2 拍攝數位全像顯微鏡之架構 50
4-3 實驗結果與分析 54
4-3-1 重建影像之實驗結果 54
4-3-2 解析度的理論與實驗值分析 57
第五章 結論 59
參考文獻 61
中英名詞對照表 68
參考文獻 [1] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[2] D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. R. Soc. 197, 454-487 (1949).
[3] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).
[4] J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[5] I. Yamaguchi, J.-i. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Optics 40, 6177-6186 (2001).
[6] J. Cowley and D. Walker, “Reconstruction from in-line holograms by digital processing,” Ultramicroscopy 6, 71-75 (1981).
[7] V. Kebbel, H.-J. Hartmann, and W. P. Jüptner, “Application of digital holographic microscopy for inspection of micro-optical components,” Proc. SPIE 4398, 189-198 (2001).
[8] X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31, 1830-1832 (2006).
[9] B. Kemper, and G. Von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
[10] N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016-2018 (2012).
[11] T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Optics Express 21, 14747-14762 (2013).
[12] M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J Microsc. 198, 82-87 (2000).
[13] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
[14] P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” JOSA A 9, 1969-1977 (1992).
[15] F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550-1552 (2001).
[16] J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002).
[17] A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express 19, 12027-12038 (2011).
[18] L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Optics 40, 5046-5051 (2001).
[19] V. R. Singh, L. Sui, and A. Asundi, “Compact handheld digital holographic microscopy system development,” presented at International Society for Optics and Photonics, Singapore, Singapore (2010).
[20] P. Girshovitz, and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Optics Express 21, 5701-5714 (2013).
[21] T. Bourgade, S. Jianfei, Z. Wang, R. Elsa, and A. Asundi, “Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization,” JoVE (2016).
[22] D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab on a Chip 10, 1787-1792 (2010).
[23] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417-1428 (2010).
[24] A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat Methods 9, 889-895 (2012).
[25] A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat Methods 9, 889-895 (2012).
[26] Y. W. Yu, C. C. Sun, P. K. Hsieh, Y. H. Huang, C. Y. Song, and T. H. Yang, “An edge-lit volume holographic optical element for an objective turret in a lensless digital holographic microscope,” Sci. Rep. 10, 1-9 (2020).
[27] C. C. Sun and P. P. Banerjee, “Volume Holographic Optical Elements,” Opt. Eng. 43, 1957-1958 (2004).
[28] J. T. LaMacchia and D. L. White, “Coded Multiple Exposure Holograms,” Appl. Opt. 7, 91-94 (1968).
[29] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
[30] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[31] C. C. Sun, R. H. Tsou, W. Chang, and J. Y. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Opt. Quantum Electron. 28, 1551-1561 (1996).
[32] F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343-347 (1991).
[33] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471-1473 (1992).
[34] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[35] C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, and B. Wang, “Three Dimensional Shifting Sensitivity of a Volume Hologram with Spherical Reference Waves,” Opt. Mem. Neural Netw. 8, 229-236 (1999).
[36] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[37] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[38] C. C. Sun, Y. M. Chen, and W. C. Su, “All-optical fiber sensing system based on random phase encoding and volume holographic interconnection,” Opt. Eng. 40, 160-161 (2001).
[39] Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6, 29452 (2016).
[40] J. O. White and A. Yariv, “Real‐time image processing via four‐wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
[41] C. C. Sun, M. W. Chang, and K.Y. Hsu, “Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501-4507 (1994).
[42] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, “A novel algorithm for high sensitivity in measuring surface variation based on volume holography,” Microwave Opt. Technol. Lett. 34, 319-321 (2002).
[43] 柯婉琇,"《國際產業》收購Akonia,蘋果AR 眼鏡逐漸成形",時報資訊 (2018)。
[44] Furch,"手機鏡頭特異功能大盤點:媲美相機的超廣角微距、顯微鏡頭、百倍變焦",T客邦 (2022)。
[45] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721-2730 (2011).
[46] Close, D. H. Holographic optical elements. Opt. Eng. 14, 408–419 (1975).
[47] Sun, C. C., Teng, T. C. & Yu, Y. W. One-dimensional optical imaging with a volume holographic optical element. Opt. Lett. 30, 1132–1134 (2005).
[48] Yu, Y. W., Chen, S. Y., Lin, C. C. & Sun, C. C. Inverse focusing inside turbid media by creating an opposite virtual objective. Sci. Rep. 6, 29452 (2015).
[49] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55, 981-986 (1965).
[50] J. W. Goodman, Introduction to Fourier Optics. 3rd eds. (McGraw-Hill, New York, 2002).
[51] W. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54, 803-804 (1966).
[52] A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
[53] I. Yamaguchi, and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[54] M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
[55] W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71, 7–14 (1981).
[56] U. Schnars and W. Jueptner, Digital holography (Springer, 2005).
[57] M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmission microscopy—a Fourier holography approach,” Opt. Lasers Eng. 41, 553-563 (2004).
[58] G. Pedrini, and H. J. Tiziani, Short-coherence digital microscopy by use of a lensless holographic imaging system. Appl. Opt. 41, 4489–4496 (2002).
[59] G. Sheoran, A. Anand, and C. Shakher, “Lensless Fourier transform digital holographic interferometer for diffusivity measurement of miscible transparent liquids,” Rev Sci Instrum 80, 053106 (2009).
[60] C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology.” Appl. Opt. 38, 4812–4820 (1999).
[61] D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. Scheld, and G. Von Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Lasers Eng. 36, 241-249 (2001).
[62] C. Y. Zhang, et al. “Application of short-coherence lensless Fourier-transform digital holography in imaging through difusive medium.” Opt. Commun. 286, 56–59 (2013).
[63] C. C. Sun, “Simplifed model for difraction analysis of volume holograms.” Opt. Eng. 42, 1184–1185 (2003).
[64] P. A. Blanche, A. H. Mahamat, and E. Buoye, “Thermal Properties of Bayfol® HX200 Photopolymer,” Materials.(2020).
[65] Covestro, “Bayfol® HX200,” https://solutions.covestro.com/en/products/bayfol/bayfol-hx200_86194384-20033146?SelectedCountry=TW.
[66] J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” JOSA A 24, 1617-1622 (2007).
[67] E. Levenson, P. Lerch, M. C. J. I. P. Martin, and Technology, “Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed,” Infrared Phys. Tech. 49, 45-52 (2006).
[68] Wikipedia, “1951 USAF resolution test chart,” https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart.
[69] International Gem Society, “Refractive Index List of Common Household Liquids,”https://www.gemsociety.org/article/refractive-index-list-of-common-household-liquids/
指導教授 余業緯 孫慶成(Yeh-Wei Yu Ching-Cherng Sun) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明