博碩士論文 109329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.131.110.169
姓名 徐文祥(Wun-Siang Syu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 雷射積層製造用試量產鐵基金屬玻璃粉末製程及其 雷射積層製造參數優化之研究
(Study on the pilot-scale production of Fe-based metallic glass powder for additive manufacturing and its parameter optimization of selective laser melting process)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 本研究以 Fe-Cr-Mo-C-B-Co-Al 七元合金成分之鐵基金屬玻璃做為基礎,委託中佑精密材料股份有限公司以氣噴粉體法(Gas atomization)試量產鐵基金屬玻璃粉體,兩爐次總重 120 kg,其產率為 21.67 %;再利用氣旋篩分(Cyclone)的方式分離 25 µm 以下的粉體,藉以提高粉體的流動性以利於後續積層製造的鋪粉。將鐵基金屬玻璃粉體進行 X 光繞射分析,結果顯示粉體在 25~53 µm 有非晶特有的寬峰以及析出相 α-Fe 和碳化物的結晶相,同步以 ICP 來確認粉體的組成成分與合金錠相符,並利用掃描式電子顯微鏡觀其粉體外觀為球型且截面為實心結構,後續將進行積層製造。
選擇使用粒徑區間 25~53 µm 之粉體進行線性燒結測試與方塊燒結測試,首先進行不同雷射功率(70 ~ 180 W)與掃描速度(200 ~ 1000 mm/s)的線性燒結測試,其中雷射功率 80 W 掃瞄速度 200 ~ 600 mm/s 之樣品連續性較好,選為後續製作方塊的燒結參數;方塊燒結測試時,選擇相同雷射功率(80 W)與掃描速度(200 ~ 600 mm/s)搭配 overlaping 30%的線寬作為掃描間距,成功燒結出尺寸 10 mm x 10mm x 2mm 之方(Sample I ~ Sample V)進行測試,X 光繞射結果為典型的非晶寬峰與析出相 α-Fe 及碳化物的結晶相;所測得的硬度值從 1145~1295 HV 和破裂韌性從6.09~2.83 Mpa*m1/2;非晶比率為 18.05 % ~36.58 %;緻密度為 98.2 %~91.5%;腐蝕電流密度(Icorr) = 2.30 x 10-5 ~ 2.88 x 10-6 A/cm2 和腐蝕電位為(Ecorr)= -0.389~ -0.332V;發現隨著能量密度的增加,其緻密度也會跟著增加,同時積層試片的非晶比率和硬度也會跟著下降,也較不耐腐蝕,依據本研究的成果最佳的條件為功率 80W-200mm/s、80W-300mm/s 掃描速度搭配 overlaping 30%最適宜進行鐵基金屬玻璃粉體進行積層製造。
摘要(英) The alloy composition of Fe-Cr-Mo-C-B-Co-Al 7 components Fe-based metallic glasses (MG) alloy was selected as the master alloy and entrusted Chung-Yo Materials Co., Ltd. (C.Y.M, Kaohsiung) to prepare the Fe-based MG powder for mass production(60 Kg per batch and 2 batch in total) and the yield rate is 21.67%. The Fe-based MG powder is produced by gas atomization and cyclone sieving process to remove the
powder below 25 µm which improved the fluidity of the powder when lay-up during additive manufacture procedure. The powder is characterized by X-ray diffraction analysis which shows the character broaden peak to implied its amorphous nature with precipitated phase α-Fe and carbonization of 25 - 53 µm-size-powder. The powder composition was confirmed by ICP analysis and identical with the designed one. SEM observation shows the spherical appearance and a solid cross-section of all-sized-Febased MG alloy powder.
The Fe-based MG powder with a particle size of 25 - 53 µm was selected for linear and square sintering test for evaluation. In this study, the working window with power
of 70 – 180 W and scan rate of 200 – 1000 mm/s were set for the linear sinter test. The sample with the power of 80 W and scanning speed of 200–600 mm/s shows better continuity and will further investigate the square sintering test. For the square sintering test of sample I to sample V were prepared with the parameter of laser power (80 W),scanning speed (200 – 600 mm/s) with overlapping 30% on 10 mm x 10 mm x 2 mm square. The X-ray diffraction results showed the typical amorphous hump with partial precipitated phase, the α-Fe, and Fe carbide. The hardness values amount those sinter settings is around 1200 Hv. For sample I and II possesses better fracture toughness results than others and the fracture toughness (6.09, 5.23 MPa*m1/2.) and amorphous
ratio (18.05%, 24.03%) as well as the after sintered density is between 98.2% to 97.4%.Moreover, to investigate the anti-corrosion ability the via potentiostatic, the current density (Icorr) value is from 2.30 x 10-5 to 2.88 x 10-6 A/cm2 and the corrosion potential (Ecorr) value is from -0.389 to -0.332V. The anti-corrosion resistance test results imply that sample with higher sintered density and the amorphous ratio presents relatively better anti-corrosion ability. In Summary, the optimal conditions of this study are power 80W-200mm/s (Sample I) and 80W-300mm/s (Sample II) couple with scanning speed with overlapping 30% for additive manufacture procedure.
關鍵字(中) ★ 鐵基金屬玻璃
★ 氣噴粉體法
★ 氣旋篩分
★ 積層製造
★ 抗腐蝕測試
★ 能量密度
關鍵字(英) ★ Fe-based bulk metallic glass
★ gas atomization
★ cyclone
★ additive manufacturing
★ corrosion resistance
★ energy density
論文目次 目錄
中文摘要 ......................................................................................................................... I
Abstract...........................................................................................................................II
致謝 .............................................................................................................................. IV
目錄 .............................................................................................................................. VI
表目錄 .......................................................................................................................... IX
圖目錄 ............................................................................................................................X
第一章 緒論...............................................................................................................1
1-1 前言 .......................................................................................................................1
1-2 研究目的與動機 ...................................................................................................2
第二章 理論基礎 .........................................................................................................7
2-1 金屬玻璃合金之概述 ...........................................................................................7
2-2 金屬玻璃合金發展 ...............................................................................................7
2-3 金屬玻璃合金設計與製作 ...................................................................................9
2-3-1 實驗歸納法則................................................................................................9
2-3-2 金屬玻璃合金製程.......................................................................................10
2-4 金屬玻璃合金特性 .............................................................................................12
2-4-1 熱力學性質..................................................................................................12
2-4-2 特徵溫度......................................................................................................12
2-4-3 玻璃形成能力 (GFA, glass forming ability)..............................................13
2-5 金屬玻璃合金之熱性質分析 .............................................................................15
2-5-1 非恆溫分析..................................................................................................15
2-6 金屬玻璃合金之種類 .........................................................................................15
2-6-1 鐵基金屬玻璃合金......................................................................................15
2-7 氣噴法之粉體製備 .............................................................................................16
2-8 積層製造 .............................................................................................................17
2-8-1 積層製造技術...............................................................................................18
2-8-2 粉末尺寸對於 SLM 的影響: .....................................................................19
VII
2-8-3 粉末形狀對於 SLM 影響: .........................................................................19
2-9 鐵基金屬玻璃粉體應用於積層製造 .................................................................20
2-10 鐵基基層製造試試片之機械性質 ...................................................................21
第三章 實驗步驟與方法.............................................................................................27
3-1 鐵基金屬玻璃粉體之製備與分析 ....................................................................27
3-1-1 鐵基金屬玻璃合金配製...............................................................................27
3-1-2 鐵基金屬玻璃粉體製備...............................................................................28
3-2 鐵基金屬玻璃粉體之性質分析 .........................................................................28
3-2-1 鐵基金屬玻璃粉體成分與微結構分析.......................................................28
3-2-2 鐵基金屬玻璃粉體之形貌觀察..................................................................29
3-2-3 鐵基金屬玻璃熱性質分析..........................................................................29
3-3 鐵基金屬玻璃積層製造 ....................................................................................30
3-3-1 鐵基金屬玻璃積層製造的實驗方法..........................................................30
3-3-2 線性燒結測試..............................................................................................30
3-3-3 面型燒結測試..............................................................................................31
3-3-4 方塊燒結測試..............................................................................................31
3-4 鐵基金屬玻璃積層製造工件燒結性質分析 ....................................................31
3-4-1 鐵基金屬玻璃積層製造工件形貌觀察......................................................31
3-4-2 鐵基金屬積層製造工件之能量密度..........................................................32
3-4-3 鐵基金屬玻璃工件緻密度..........................................................................32
3-4-4 鐵基金屬玻璃工件熱性質分析...................................................................33
3-4-5 鐵基金屬玻璃工件機械性質.......................................................................33
3-4-6 腐蝕測試(Tafel 動態極化法).....................................................................34
第四章 結果與討論 ...................................................................................................45
4-1 鐵基金屬玻璃粉體之製備與分析 .....................................................................45
4-1-1 鐵基金屬玻璃粉體製備...............................................................................45
4-1-2 鐵基金屬玻璃粉體成分與微結構分析.......................................................45
4-1-3 鐵基金屬玻璃粉體之形貌觀察...................................................................46
4-1-4 鐵基金屬玻璃熱性質分析...........................................................................46
VIII
4-2 鐵基金屬玻璃積層製造的實驗方法 .................................................................47
4-2-1 線性燒結分析...............................................................................................47
4-2-2 方塊燒結分析...............................................................................................47
4-3 鐵基金屬玻璃積層製造工件燒結性質分析 .....................................................48
4-3-1 X-ray 繞射分析 ............................................................................................48
4-3-2 鐵基金屬玻璃工件緻密度量測...................................................................48
4-3-3 鐵基金屬玻璃工件熱性質分析...................................................................48
4-3-4 鐵基金屬玻璃工件機械性質分析...............................................................49
4-3-5 光學顯微鏡分析(Optical Microscopy).......................................................50
4-3-6 腐蝕性質分析(Tafel 動態極化法)..............................................................50
第五章 結論 ...............................................................................................................69
第六章 參考文獻 .........................................................................................................70
參考文獻 [1] C. Lund, "Topological and chemical arrangement of binary alloys during severe
deformation", Journal of Applied Physics, Vol. 95, pp. 4815-4822 (2004).
[2] H. S. Chen, H. J. Leamy, and C. E. Miller, "Preparation of glassy metals", Annual
Review of Materials Science, Vol. 10, pp. 363-91 (1980).
[3] L. Wang, Y. Chao, "Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic
glass in NaCl solution", Materials Letters, Vol. 69, pp. 76-78 (2012).
[4] A. Inoue, K. Hashimoto, "Amorphous and Nanocrystalline Materials", Springer
(2001).
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous
Alloys", Acta Materialia, Vol. 48, pp. 279-306 (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of bulk
metallic glass-Applications for MEMS and microstructure fabrication", Materials
Science and Engineering, Vol. A449–451, pp. 898–902 (2007).
[7] J. S. C. Jang, P. H. Tsai, A. Z. Shiao, T. H. Li, C.Y. Chen, J. P. Chu, J. G. Duh,
M. J. Chen, S. H. Chang, W. C. Huang, "Enhanced cutting durability of surgical
blade by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65,
pp. 56-60 (2015).
[8] B. Zhou, J. Zhou, H. Li. and F. Lin, "A study of the microstructures and mechanical
properties of Ti-6Al-4V fabricated by SLM under vacuum", Materials Science and
Engineering, Vol. A724, pp.1-10 (2018).
[9] L. Yang, J. Zhang, Y. Yangc, J. Li, J. Chen, "Study on the influence of process
parameters on the clearance feature in non-assembly mechanism manufactured by
selective laser melting", Journal of Manufacturing Processes, Vol. 27 pp. 98–107
71
(2017).
[10] P. H. Tsai, A. C. Xiao, J. B. Li, J. S. C. Jang, J. P. Chun, J. C. Huang, " Prominent
Fe-based bulk amorphous steel alloy with large supercooled liquid region and
superior corrosion resistance", Journal of Alloys and Compounds, Vol. 586, pp. 94-
98 (2014).
[11] M. Zheng, L. Wei, J. Chen, Q. Zhang, G. Zhang, X. Lin, W. Huang, "On the role
of energy input in the surface morphology and microstructure during selective laser
melting of Inconel 718 alloy", Journal of Materials Research and Technology, pp.
392-403 (2021).
[12] J. Kramer, "Produced the first amorphous metals through vapor deposition",
Annals of Physics, Vol. 19, pp. 37 (1934).
[13] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of
Phosphorus with Nickel or Cobalt", Journal of Research of the National Bureau of
Standards, Vol. 44, pp. 109-122 (1950).
[14] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified
Gold-Silicon alloys", Nature, Vol. 187, pp. 869-870 (1960).
[15] H. S. Chen, "Glassy metals", Reports on Progress in Physics, Vol. 43, pp. 364
(1980).
[16] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of
amorphous Ni60Nb40 by mechanical alloying", Applied Physics Letters, Vol. 43, pp.
1017-1019 (1983).
[17] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates",
Materials Transactions JIM, Vol. 36, pp. 866-875 (1995).
[18] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and
Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method", Material
Transactions JIM, Vol. 31, pp. 425-428 (1990).
72
[19] A. Inoue, T. Nakamurat, N. Nishiyamatt, T. Masumoto, "Mg-Cu-Y Bulk
Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die
Casting Method", Materials Transactions JIM, Vol. 33, pp. 937-945 (1992).
[20] R. Abbaschian, L. Abbaschian, R. E. Reed, Physical Metallurgy Principles, Third
edition (1994).
[21] K. W. Dalgarno and T. D. Stewart, " Manufacture of production injection mould
tooling incorporating conformal cooling channels via indirect selective laser
sintering", Proceeding of the Institution of Mechanical Engineers, Vol. 215, pp.
1323-1332 (2001)
[22] C. Suryanarayana, A. Inoue, "Bulk Metallic Glassed", pp. 61 (2011).
[23] K. L. Chapra, "Thin Film Phenomena”, McGraw-Hill (1969).
[24] G. N. Jackson, "R.F. sputtering", Thin Solid Film, Vol. 5, pp. 209 (1907).
[25] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates",
Materials Transactions, Vol. 36, pp. 866-875 (1995).
[26] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses",
Acta Materilia, Vol. 50, pp. 3501-3512 (2002).
[27] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming
Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101, pp.
086108-1-3 (2007).
[28] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh , "Glass forming ability of bulk
glass forming alloys" , Scr Mater , Vol. 36 , PP. 783 (1997).
[29] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion",
Intermetallics, Vol. 18, pp. 883-888 (2010).
[30] R. Abbaschian, L. Abbaschian, R. E. Reed, Physical Metallurgy Principles, Third
edition (1994)
[31] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection mould
73
tooling incorporating conformal cooling channels via indirect selective laser
sintering", Proceeding of the Institution of Mechanical Engineers, Vol. 215, pp.
1323-1332 (2001).
[32] M. Randall, Powder Metallurgy Science, Second edition (1994).
[33] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in Gas
Atomization", Materials Sciences and Applications, Vol. 2, pp. 87-96 (2011).
[34] B. C. Gross, J. L. Erkal, S.Y. Lockwood, C Chen, M. D. Spence, " Evaluation of
3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences",
Analytical Chemistry, Vol. 86, pp. 3241-3243 (2014).
[35] E. O. Olakanmi, K. W. Dalgarno, R. F. Cochrane, "Laser sintering of blended Al–
Si powders", Rapid Prototyp J, Vol. 18, pp.109–119 (2012).
[36] S. Pal, M. Finsgar, T. Boncina, G. Lojen, T. Brajlih, I. Drstvensek, "Effect of
surface powder particles and morphologies on corrosion of Ti-6Al-4V fabricated
with different energy densities in selective laser melting", Materials & Design, Vol.
211, 110184-1-17 (2021)
[37] K. W. Dalgarno and T. D. Stewart, " Manufacture of production injection mould
tooling incorporating conformal cooling channels via indirect selective laser
sintering", Proceeding of the Institution of Mechanical Engineers, Vol. 215, pp.
1323-1332 (2001).
[38] X. D. Nong, X. L. Zhou, Y. X. Ren, "Fabrication and characterization of Fe-based
metallic glasses by Selective Laser Melting", Materials and Design, Vol. 189,
108542-1-7 (2020).
[39] W. Yuan, H. Chen, T. Cheng, Q. Wei, "Effects of laser scanning speeds on different
states of the molten pool during selective laser melting: Simulation and
experiment", Materials and Design, Vol.189, 108542-1-10 (2020).
[40] X. P. Li, M. P. Roberts, S. O′Keeffe, T. B. Sercombe, "Selective laser melting of
74
Zr-based bulk metallic glasses: Processing, microstructure and mechanical
properties ", Materials and Design, Vol. 112, pp. 217–226 (2016).
[41] I. Yadroitsev, P. Bertrand, I. Smurov, "Parametric analysis of the selective laser
melting process", Applied Surface Science, Vol. 253, pp. 8064–8069 (2007).
[42] H. Y. Jung, S. J. Choi, "Fabrication of Fe-based bulk metallic glass by selective
laser melting: A parameter study", Materials and Design, Vol. 86, pp.703–708
(2015)
[43] M. S. Bertoli, A. J. Wolfer, M. J. Matthews, "On the limitations of Volumetric
Energy Density as a design parameter for Selective Laser Melting", Materials and
Design, Vol. 113, pp. 331–340 (2017).
[44] M. Ghayoora, K. Leea, Y. Hec, C. H. Changc, B. K. Paula, S. Pasebania, "Selective
laser melting of 304L stainless steel: Role of volumetric energy density on the
microstructure, texture and mechanical properties", Additive Manufacturing, Vol.
32, 101011-1-13 (2020).
[45] I. Yadroitsev, P. Bertrand, I. Smurov, "Parametric analysis of the selective laser
melting process", Applied Surface Science, Vol. 253, pp. 8064–8069 (2007)
[46] E.Olakanmi, R. Cochrane, K. Dalgarno, "Densification mechanism and
microstructural evolution in selective laser sintering of Al–12Si Powders", Journal
of Materials Processing Technology, Vol. 211, pp. 113–121 (2011).
[47] B. Zhou, J. Zhou, H. Li and F. Lin, "A study of the microstructures and mechanical
properties of Ti-6Al-4V fabricated by SLM under vacuum". Materials Science and
Engineering, A724, pp.1-10 (2018)
[48] H. R. Javidrad, M. Ghanbari, F. Javidrad, "Effect of scanning pattern and
volumetric energy density on the properties of selective laser melting Ti-6Al-4V
specimens", Journal of Materials Research and Technology, Vol. 12, pp. 989-998
(2021).
75
[49] D. Ouyang, W. Xing, N. Li, Y. Li, L. Lin, "Structural evolutions in 3D-printed Febased metallic glass fabricated by selective laser melting", Additive Manufacturing,
Vol.23, pp. 246-252 (2018).
[50] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal, S. Kazi,
S. Badshah, R. U. Khan, "Energy Absorption Ability of Thin-Walled Square
Hollow Section of Low Carbon Sheet Metals under Quasi-Static Axial
Compression", Journal of Advanced Research in Applied Mechanics, Vol. 18, pp.
1-14 (2016).
[51] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation
of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack
Measurements", Journal of the American Ceramic Society, Vol. 6, pp. 533-538
(1981).
[52] S. F. Guo, K. C. Chan, S. H. Xie, P. Yu, Y. J. Huang, H. J. Zhang, "Novel
centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in
simulated acid rain and seawater", Journal of Non-Crystalline Solids, Vol. 369, pp.
29-33 (2013)
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明