博碩士論文 109329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.217.112.20
姓名 李豪杰(Hao-Chieh Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 均質化與加工量對Al-8.6Zn-1.6Mg-2.1Cu合金再結晶與淬火敏感性之影響
(Effect of homogenization and deformation on the recrystallization and quench sensitivity of Al-8.8Zn-1.5Mg-2.1Cu alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 含Zr之Al-Zn-Mg-Cu合金藉由二段式均質化處理,可析出細小且緻密、與鋁基地呈整合介面之Al3Zr顆粒,此散佈相顆粒可有效提升抑制再結晶與晶粒成長的效果,且經高溫固溶後,於淬火過程下,較不易於整合之Al3Zr散佈相上析出η(MgZn2)相,保留了鋁基地中的固溶強化原子,因此於時效處理後,可維持合金良好的機械性質及較低之淬火敏感性;而塑性變形可將儲存能導入合金內部,使合金之再結晶比例隨著加工量上升而增加,另外,二段式均質化合金經塑性變形後,整合且細小的Al3Zr顆粒將會轉變為具較高能量之非整合界面,此時雖仍具良好抑制再結晶與晶粒成長的效果,但卻會提高固溶淬火時於Al3Zr散佈相上析出η(MgZn2)相之機會,導致合金具有較嚴重之淬火敏感性,且隨加工量愈大,淬火敏感性愈明顯。
傳統之一段式均質化,於基地中析出較為粗大且稀疏之非整合Al3Zr顆粒,導致其抑制再結晶與晶粒成長之效果不如二段式均質化,且冷加工並不會改變Al3Zr顆粒與介面的非整合性,故冷加工量並不會造成合金之淬火敏感性之差異。非整合介面之Al3Zr顆粒雖會提高固溶淬火時於散佈相上析出η(MgZn2)相之機會,但其數量較二段式均質化合金少,即代表著η(MgZn2)平衡相可異質成核的位置較少,因此有效地限制了合金機械性質的下降,故其淬火敏感性較經加工之二段式均質化合金為佳。
由研究結果顯示,二段式均質化雖可提高合金之機械性質,但經高加工量之合金其淬火敏感性會明顯提升,故二段式均質化合金在實務製作上適合應用於容易快速淬火之薄板材;而一段式均質化析出稀疏且非整合之Al3Zr顆粒,固溶冷卻時較容易析出平衡相,但卻可維持合金之機械性質與淬火敏感性,故相較於二段式均質化合金,更適合應用於厚材之製作;於合金製作時,藉均質化處理改變晶粒大小、提高機械性質外,亦需注意散佈相與鋁基地之介面關係,以達到降低淬火敏感性之目的。
摘要(英) After two-stage homogenization, the Al-Zn-Mg-Cu alloy containing Zr will precipitate fine and dense Al3Zr particles that coherence with the aluminum base. The dispersed phase can inhibition of recrystallization and grain growth effectively. After the solid solution treatment, the η(MgZn2) phase is not easily to precipitated on the coherence Al3Zr during the quenching process. And the solid solution atoms are retained in the aluminum base, so after the aging treatment, the alloy can maintain high mechanical properties and low quenching sensitivity. The deformation can introduce the stored energy into the alloy so that the recrystallization ratio of the alloy will increase with the increase of the amount of cold rolling. In addition, the coherence and fine Al3Zr particles in the two-stage homogenized alloy will be transformed into incoherence with higher energy after deformation treatment. Although it still can inhibit recrystallization and grain growth effectively, it will increase the chance of precipitation of the η(MgZn2) phase on the Al3Zr particles during the quenching process. It will result in the alloy having a serious of quenching sensitivity, and with the increase of the deformation amount, the quenching sensitivity is more obvious.
The one-stage homogenization alloy precipitates coarser and sparser incoherence Al3Zr particles, which leads to its effect of inhibiting recrystallization and grain growth is not as good as the two-stage homogenization. The cold working does not change the incoherence between Al3Zr particles and the interface, so the amount of cold working does not cause a difference in the quenching sensitivity of the alloy. Although the incoherence Al3Zr particles will increase the chance of precipitation of the η(MgZn2) phase on the dispersed phase during the quenching process. However, its number is less than that of the two-stage homogenized alloy, which means that the η(MgZn2) phase has fewer sites for heterogeneous nucleation. Therefore, the decline of the mechanical properties of the alloy is effectively limited, so its quenching sensitivity is better than that of the processed two-stage homogenized alloy.
The results show that the two-stage homogenization can improve the mechanical properties of the alloy, but the quenching sensitivity of the alloy will be significantly increased with a high amount of cold deformation. Therefore, the two-stage homogenized alloy is suitable for thin plates which can easy to quickly quench; while the one-stage homogenization precipitates sparse and incoherence Al3Zr particles, it is easier to precipitate the equilibrium phase during the quenching process, but it can maintain the mechanical properties and quenching sensitivity of the alloy, so it is more suitable for the production of thick materials than the two-stage homogenized alloy. In summary, in the production of alloys, in addition to homogenization treatment to change the grain size and improve the mechanical properties, it is still necessary to pay attention to the interfacial relationship between the dispersed phase and the aluminum base to achieve the purpose of reducing the quenching sensitivity.
關鍵字(中) ★ Al-Zn-Mg-Cu合金
★ 均質化
★ 冷加工
★ Al3Zr
★ 再結晶
★ 淬火敏感性
關鍵字(英) ★ Al-Zn-Mg-Cu alloy
★ Homogenization
★ Cold rolling
★ Al3Zr
★ Recrystallization
★ Quenching sensitivity
論文目次 摘要 I
Abstract III
謝誌 V
總目錄 VI
圖目錄 IX
表目錄 XII
壹、前言與文獻回顧 1
1.1鋁合金簡介 1
1.2 AA7095合金簡介 2
1.3 Al-Zn-Mg-Cu合金之熱處理及析出強化機制 3
1.4 再結晶行為 7
1.4.1 退火處理對再結晶微結構之影響 7
1.4.2 加工量對再結晶之影響 8
1.4.3均質化對再結晶之影響 9
1.5 淬火敏感性 12
1.5.1 散佈相尺寸對淬火敏感性之影響 13
1.5.2 加工量對介面關係與淬火敏感性之影響 14
1.6研究目的與實驗規劃構思 15
貳、實驗步驟與方法 17
2.1合金融配 17
2.2均質化、熱輥軋與退火 18
2.3冷輥軋與T6熱處理 19
2.4微結構分析 20
2.4.1導電度量測 20
2.4.2光學顯微鏡(Optical Microscopy, OM) 20
2.4.3電子背向散射繞射(Electron Backscatter Diffraction, EBSD) 21
2.4.4穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 21
2.5機械性質分析 22
2.5.1硬度試驗(Hardness, HRB) 22
2.5.2拉伸性質(Tensile Test) 22
2.5.3端面淬火試驗 23
參、結果與討論 24
3.1微結構分析 24
3.1.1鑄態與均質化合金之OM微結構分析 24
3.1.2均質化合金之穿透式電子顯微鏡(TEM)微結構分析 25
3.1.3熱輥態與退火態合金之OM微結構分析 27
3.1.4冷輥態合金之OM微結構分析 28
3.1.5固溶處理合金之OM微結構分析 29
3.1.6電子背像散射繞射(EBSD)分析 32
3.1.7退火態之高解析度穿透式電子顯微鏡(HRTEM)微結構分析析 35
3.1.8 T6態合金之穿透式電子顯微鏡(TEM)微結構分析 36
3.2導電度(%IAC與淬火敏感性分析 39
肆、結論 45
伍、參考資料 46
參考文獻 [ASTM1] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy (2017)
[ASTM2] ASTM B221M-13, Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric) (2005)
[ASTM3] ASTM E1558-09, Standard Guide for Electrolytic Polishing of Metallographic Specimens (2014)
[ASTM4] ASTM E18-15, Standard Test Methods for Rockwell Hardness of Metallic Metals (2015)
[ASTM5] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials (2016)
[BER] L. K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta mater, Vol. 49, pp. 3443–3451 (2001)
[CHA] H. M. Chan, F. J. Humphreys, Effect of particle stimulated orientation of recrystallized grains, Metal Science, Vol.18, pp.527-530 (1984)
[CHE] S. Chen, K. Chen, G. Peng, X. Liang, X. Chen, Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 47-52 (2012)
[CHI] Y. C. Chiu, D. K. Ting, S. L. Lee, The effects of Cu, Zn, and Zr on the solution temperature and quenching sensitivity of Al-Zn-Mg-Cu, Materials Chemistry and Physics, Vol. 247, No. 122853 (2020)
[CLA] L. M. Clarebrough, M. E. Hargreaves, G. W. WestSource, The release of energy during annealing of deformed metals, Mathematical and Physical Sciences, Vol. 232, pp. 252-270 (1955)
[DAI] P. Dai, X. Luo, Y. Yang, Z. Kou, B. Huang, C. Wang, J. Zang, J. Ru, Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure, Materials Science & Engineering A, Vol. 729, pp. 411-422 (2018)
[DAV] J. R. Davis and Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, pp. 34-36 (2007)
[DAVY] V. G. Davydov, T. D. Rostova, Scientific principles of making an alloying addition of scandium to aluminum alloys, Materials Science and Engineering A, Vol. 280, pp. 30-36 (2000)
[DEN1] Y. Deng, L. Wan, Y. Zhang, X. Zhang, Influence of Mg content on quench sensitivity of Al–Zn–Mg–Cu aluminum alloys, Journal of Alloys and Compounds. Vol. 509, pp. 4636–4642 (2011)
[DEN2] Y. Deng, Y. Zhang, L. Wan, A. Zhu, X. Zhang, Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr, Metallurgical and Materials Transactions A. Vol. 44, pp. 2470-2477 (2013)
[DUR] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminum alloys, Materials and Design, Vol. 56, pp. 862–871 (2014)
[GAL] D. B. Gallardy, Ballistic Evaluation of 7056 Aluminum, US Army Research Laboratory (2017)
[GOR] P. Gordon, Microcalorimetric Investigation of Recrystallization of Copper, Journal of Metals, Vol. 7, pp. 1043-1052 (1955)
[GOU] S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Materials Science and Engineering: A, Vol. 283, pp. 274-288 (2000)
[GUO] Z. Guo, G Zhao, X. Chen, Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy, Materials Characterization. Vol. 102, pp. 122-130 (2015)
[HEA] J. T. Healey, R. W. Gould, Effect of thermal and mechanical pretreatments on the guinier-preston zone state of a commercial 7075 aluminum alloy, Metallurgical Transactions A, Vol. 8, pp. 1907-1910 (1977)
[HUM] F.J. Humphreys, M. Hatherly, Recrystallination and related annealing phenomena, ELSEVIER Ltd, pp.170-213 (2004)
[ITO] G. Itoh, T. Eto, Y. Miyagi M. Kanno, Al-Zn-Mg alloys, Japan Science and Technology, Vol. 38, No.12, pp. 818-839 (1988)
[IWA] S. Iwamura, Y. Miura, Loss in coherency and coarsening behavior of A13Sc precipitates, Acta Materialia, Vol. 52, pp. 591-600 (2004)
[JIA] Z. H. Jia, Precipitation behavior of A13Zr precipitate in Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys, Transactions of Nonferrous Metals Society of China. Vol. 22, pp. 1860-1865 (2012)
[KAS] K. T. Kashyap, Effect of zirconium addition on the recrystallization behavior of a commercial Al-Cu-Mg alloy, Material Science, Vol. 24, No. 6, pp. 643-648 (2001)
[KNI] K. E. Knipling, D. C. Dunand, Criteria for developing castable, creep-resistant aluminum-based alloys - A review, Zeitschrift für Metallkunde, Vol. 97, No. 3, pp. 246-265 (2006)
[LEE] S. L. Lee, C. T. Wu, Y. D. Chen, Effects of minor Sc and Zr on the microstructure and mechanical properties of Al-4.6Cu-0.3Mg-0.6Ag alloys, Journal of Materials Engineering and Performance, Vol. 24, pp. 1165-1172 (2015)
[LIM] S.T. Lim, S.J. Yun, Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications, Materials Science and Engineer, Vol. 371, pp. 82-90 (2004)
[LIU1] J. Liu, Y. Zhang, X. Li, Z. Li, B. Xiong, J. Zhang, Phases and microstructures of high Zn-containing Al–Zn–Mg–Cu alloys, Rare Metals, Vol. 35, pp. 380-384 (2014)
[LIU2] S. Liu, W. Liu, Effect of microstructure on the quench sensitivity of AlZnMgCu alloys, Journal of Alloys and Compounds, Vol. 507, pp. 53-61 (2010)
[LIU3] J. Liu, P. Yao, N. Zhao, C. Shi, H . Li, X. Li, D. Xi, S. Yang, Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys. Journal of Alloys and Compounds, Vol. 657, pp. 717-725 (2016)
[LIU4] S.D. Liu, X.M. Zhang, Influence of aging on quench sensitivity effect of 7055 aluminum alloy, Materials Characterization, Vol. 59, pp. 53-60 (2008)
[LUN] O. B. Lung, Y. J. Gang, W. M. Yu, Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys, Metallurgical and Materials Transactions A, Vol. 38A, pp. 1760-1773 (2007)
[MAR] J. W. Martin, Micromechanisms in particle-hardened alloys, Cambridge University Press, p. 78 (1980)
[OU] B. Ou, J. Yag, M. Wei, Effect of Homogenization and Aging Treatment on Mechanical Properties and Stress-Corrosion Cracking of 7050 Alloys, Metallurgical and Materials Transactions A, Vol. 38A, pp. 1760-1773 (2007)
[PAN] T. Pan, Y. Tzeng, H. Bor, K. Liu, S. Lee, Effects of the coherency of Al3Zr on the microstructures and quench sensitivity of Al–Zn–Mg–Cu alloys, Materials Today Communications. Vol. 28, 102611 (2021)
[PEN] G. S. Peng, K. H. Chen, S. Y. Chen, H. C. Fang, Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-Mg-Cu alloy, Materials Science and Engineering A, Vol. 528, pp. 4014-4018 (2011)
[RAJ] R. Rajan, P. Kah, B. Myola, J. Martikainen, Trends in aluminum alloy development and their joining methods, Review Advance Material Science, Vol. 44, pp. 383-397 (2016)
[RAM] P. Rambabu, N. Eswara Prasad, V.V. Kutumbarao, R. J. H. Wanhill, Aerospace Materials and Material Technologies - Chapter 2:Aluminum alloys for aerospace applications, Springer Science, Vol. 1, pp. 29-52 (2017)
[ROB1] E. Robert, R. Abbaschian, L. Abbaschian, Physical Metallurgy Principles, 4th edition, p. 237 (2010)
[ROB2] J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, R.C. Wimpory, The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075, Materials Characterization,Vol. 65, pp. 73-85 (2012)
[SHA] Gang Sha, Alfred Cerezo, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Materialia, Vol. 52, pp. 4503-4516 (2004)
[SON] L. Song, S. Liu, A new method for fast statistical measurement of interfacial misfit strain around nano-scale semi-coherent particles, RSC Advances (2017)
[SPE] M. O. Speidel, M. V. Htatt, Advances in Corrosion Science and Technology, Vol. 2, pp. 115-127 (1972)
[SU] Q. Su, J. Xu, H. Yu, Effect of Grain Size on Formability and Deformation Mechanism of High-Purity Aluminum during Micro-Embossing Process at Elevated Temperature, Advanced Engineering Materials, Vol. 21, pp.164-528 (2019)
[SUN1] Y. Sun, X. Bai, D. Klenosky, K. Trumble, D. Johnson, A study on peripheral grain structure evolution of an AA7050 aluminum alloy with a laboratory-scale extrusion setup, Journal of Materials Engineering and Performance, Vol. 28, pp. 5156–5164 (2019)
[SUN2] F. Sun, G. Liu, Q. Li, E. Liu, C. He, C. Shi, N. Zhao, Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys, Journal of Materials Science & Technology, Vol. 33, pp. 1015-1022 (2017)
[TAN] J. Tang, H. Chen, X. M. Zhang, Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy, Transactions of Nonferrous Metals Society of China. Vol. 22, pp. 1255-1263 (2012)
[TZE] Y. Tzeng, C. Chung, H. Chien, Effects of trace amounts of Zr and Sc on the recrystallization behavior and mechanical properties of Al-4.5Zn-1.6Mg alloys, Materials Letters, Vol. 228, pp. 270-272 (2018)
[WAR] T. Warner, Recently-developed aluminum solutions for aerospace applications, Materials Science Forum, Vol. 519-521, pp. 1271-1278 (2006)
[WANG] Y. Wang, L. Cao, Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085, Journal of Alloys and Compounds, Vol. 814, No.152264 (2020)
[WU] L. Wu, W. Wang, Y. Hsu, S. Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy, Journal of Alloys and Compounds, Vol. 456, pp. 163-169 (2008)
[XIA] T. Xiao, Y. Deng, L. Ye a, H. Lin, C. Shan, P. Qian, Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zralloys, Materials Science and Engineering: A, Vol. 675, pp. 280-288 (2016)
[XU] D. K. Xu, P. A. Rometsch, N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy, Materials Science and Engineering A, Vol. 534, pp. 234-243 (2012)
[YU] X. Yu, G. jun, Paul Rometsch, W. juan, Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy, Journal of Alloys and Compounds, Vol. 456, pp. 163-169 (2008)
[ZHA2] Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M. Starink, P. Rometsch, Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering, Materials and Design, Vol. 142, pp. 259-267 (2018)
[ZHA1] M. Zhang, T. Liu, C. He, Ji. Ding, E. Liu, C. Shi, J. Li, I. Zhao, Evolution of microstructure and properties of Al-Zn-Mg-Cu-Sc-Zr alloy during aging treatment, Journal of Alloys and Compounds, Vol. 658, pp. 946-951 (2016)
[ZHA3] M. Zhang, C. Li, Y. Zhang, S. Liu, J. Jiang, J. Tang, L. Ye, X. Zhang, Effect of hot deformation on microstructure and quenching-induced precipitation behavior of Al-Zn-Mg-Cu alloy, Materials Characterization. Vol. 172, pp. 110861 (2021)
[ZHA4] Y. Zhang, C. Bettles, P. Rometsch, Effect of recrystallisation on Al3Zr dispersoid behaviour in thick plates of aluminium alloy AA7150, Journal of Materials Science, Vol. 49, pp. 1709-1715 (2014)
[ZHAO] J. Zhao, Y. Deng, Effects of initial grain size of Al-Zn-Mg-Cu alloy on the recrystallization behavior and recrystallization mechanism in isothermal compression, Metals, Vol. 9, No.110 (2019)
[ZHE] Y. Zheng, C. Li, S. Liu, Y. Deng, X. Zhang, Effect of homogenization time on quench sensitivity of 7085 aluminum alloy, Transactions of Nonferrous Metals Society of China. Vol. 24 pp. 2275-2281 (2014)
[ZHEN] L. Zhen, J. Chen, S. Yang, W. Shao, S. Dai, Development of microstructures and texture during cold rolling in AA 7055aluminum alloy, Materials Science and Engineering A, Vol. 504, pp. 55-63 (2009)
指導教授 李勝隆(Sheng-Long LEE) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明