博碩士論文 109226046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.220.181.186
姓名 張哲瑋(Zhe-Wei Zhang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 室內光源的等效黑視素照度及晝夜節律刺激值 對靜態工作專注力之主客觀探討
(Subjective and Objective Investigation of Static Work Attention with Different Equivalent Melanopic Lux and Different Circadian Stimulus Values)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 當今都市人大部分的時間都生活在人造光源底下,以往的照明沒有特別注重在人的專注力、睡眠甚至使用者的情緒上,每每都著重在色彩表現、發光效率等等,尤其疫情時代的來臨,人們不常到室外活動,有更多時間是待在室內,因此更顯得視覺人因照明極其重要。
本研究模擬室內辦公室環境,分析使用者在不同情境照明下的生心理影響和專注程度之影響,並利用基因演算法設計出不同等效黑視素照度(Equivalent Melanopic Lux, EML)或不同晝夜節律刺激值(Circadian stimulus, CS)以及自訂誤差內的色偏差值(Duv)、平均演色性指數(Ra)等條件限制之情境照明。本研究將延續實驗室既有的照明人因評估技術,招募受試者在模擬辦公室進行靜態的紙本測驗,並加以嘗試改進實驗流程、測驗內容。
本實驗固定所有情境的桌面照度為500 lx,並設計出六種不同色溫不同晝夜節律刺激值和不同等效黑視素照度(Equivalent Melanopic Lux, EML)的光源光譜,並使用其情境進行了三個照明實驗。實驗一的研究目的為比較不同晝夜節律刺激值和等效黑視素照度的影響,使用相同色溫5000 K,三個情境分別為情境一CS值0.4搭配EML:500;情境二CS值0.4搭配EML:300;情境三CS值0.3搭配EML:300。實驗二針對實驗一進行部分修改以增加實驗準確性與流暢性,情境的部分改使用相同色溫3000 K,三個情境分別為情境四CS值0.45搭配EML:340;情境五CS值0.3搭配EML:340;情境六CS值0.3搭配EML:170。實驗三則使用實驗二的實驗方式搭配實驗一的情境進行實驗。
Neurosky腦波儀負責量測和記錄受試者在情境下工作、休息的腦波訊號,並匯入MATLAB撰寫程式進行分析,當中包羅了經驗模態分解法(Empirical mode decomposition, EMD)、希爾伯特轉換(Hilbert transform, HT)、機率密度函數(Probability density function, PDF)以及接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve)等運算,最後利用接收者操作特徵曲線的曲線下面積(Area under the curve, AUC)和作答總題數、正確率作為客觀指標;以主觀問卷所得的評分作為主觀指標。主客觀指標分別匯入SPSS統計軟體進行變異數分析,檢視在三種情境之間所使用的指標是否具有顯著差異,之後進一步探究主客觀指標的情境狀況。
研究結果顯示在客觀指標方面,僅有實驗三中的情境一跟情境三的Beta頻段在成對比較具有顯著差異,在其他實驗中α、β、γ的頻帶下情境間沒有顯著差異;在主觀指標方面,實驗一、三中的情境二(色溫為5000 K,CS值為0.4,EML為300)相比於情境一(色溫為5000 K,CS值為0.4,EML為500)在相同色溫、CS值下,較低的EML對受試者的視覺感受會偏疲勞;實驗二的問卷結果顯示在相同色溫下,較低的CS值與EML會影響到人們工作效率等等;紙本測驗的答題情況也可看出在CS值較高的光源下答題,正確率最高的次數較多。
摘要(英) Nowadays, urbanites live under artificial light sources most of the time. Instead of paying attention to the effects of lighting on human’s concentration, sleep, or even emotions, people used to focus on the color performance and luminous efficiency formerly. However, in the era of epidemics, people spend more time indoors rather than go to outdoor activities. That’s why human centric lighting become increasingly important.
This study takes the office environment as the experimental field to evaluate the effects of different lighting spectra on user’s physical and mental states and attention level. We used genetic algorithms to generate lighting situations with preset correlated color temperatures (CCTs) but different equivalent melanopic lux (EML) or circadian stimulus (CS). Tolerance of delta uv (Duv) and color rendering index (Ra) are within the custom range. The experiment inherited the procedures designed in the team previously. Participants were recruited to perform the static paper-based tests in the office.
The NeuroSky MindWave Mobile 2 was utilized to measure the users’ EEG signals. After that the signals were collected into MATLAB and going through empirical mode decomposition (EMD), Hilbert-Huang transform (HHT), probability density function (PDF), and receiver operating characteristic curve (ROC curve) analysis. And lastly, the area under the ROC curves (AUCs) and the scores of the tests were calculated to become the objective indices. On the flip side, the scores of the questionnaires were the subjective indices.
The first experiment has three lighting scenarios of different EML and CS combinations with a fixed CCT at 5000 K and illuminance at 500 lx. The CS value is 0.4 and the EML value is 500 in the scenario one. The scenario two has CS of 0.4 and EML of 300 and the scenario three has CS of 0.3 and EML of 300. For the purpose of increasing the accuracy and fluency of the experiment, the second experiment uses the modified experimental content from the first experiment. Three lighting scenarios with a fixed CCT at 3000 K and illuminance at 500 lx, with CS of 0.45 and EML of 340 in the scenario four, CS of 0.3 and EML of 340 in the scenario five, and CS of 0.3 and EML of 170 in the scenario six. The third experiment takes the experimental method of the second experiment and the lighting scenarios of the first experiment.
The results from the questionnaires showed that in the first and the third experiment, the scenario two with lower EML value (CCT at 5000 K, CS at 0.4 and EML at 300) made the visual experience more fatigued compared with the scenario one (with the same CCT and CS). The second experiment showed that under the same CCT, lower CS and EML values affected people′s work efficiency. Additionally, the results of paper-based tests showed a higher accuracy rate for the lighting scenarios with a higher CS value in the third experiment. The current experimental design and the method of data analysis shall be applicable to test other lighting scenarios in the future, even though the analysis of brainwaves in several frequency bands shows no significance in the present study.
關鍵字(中) ★ 等效黑視素照度
★ 晝夜節律刺激
★ 腦電圖
★ 經驗模態分解法
★ 希爾伯特轉換
★ 機率密度函數
關鍵字(英) ★ equivalent melanopic lux
★ circadian stimulus
★ correlated color temperature
★ EEG
★ empirical mode decomposition
★ Hilbert transform
論文目次 摘要 viii
Abstract x
致謝 xii
目錄 xiv
圖目錄 xix
表目錄 xxiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
1-3-1 研究假設 4
1-3-2 研究限制 4
1-3-3 研究方法與步驟 5
第二章 文獻探討 7
2-1 照明對生理的影響 7
2-1-1 非視覺系統 10
2-1-2 晝夜節律刺激值 12
2-1-3 等效黑視素照度 15
2-2 視覺疲勞判別 18
2-2-1 視覺疲勞的主觀評估 19
2-3 生理回饋與腦波 21
2-3-1 腦電圖 22
2-3-2 腦電位量測 24
2-4 基因演算法 28
第三章 研究方法與步驟 31
3-1 實驗設計 31
3-1-1 心理學實驗設計 32
3-1-2 視力檢查與專注力前測實驗 33
3-1-3 情境光源設計 36
3-1-4 照明實驗一 38
3-1-5 照明實驗二 39
3-1-6 照明實驗三 40
3-2 實驗設備 40
3-2-1 光譜可調式光源箱 41
3-2-2 光源照明分析控制軟體 42
3-2-3 連接光源控制軟體照度計THOUSLITE FS 44
3-2-4 色彩照度計CL-70F 44
3-2-5 視力檢查儀 45
3-2-6 腦波儀 46
3-3 照明實驗一 47
3-3-1 實驗環境配置 47
3-3-2 實驗流程 52
3-3-3 實驗內容 54
3-4 照明實驗二、三 56
3-5 實驗資料分析方法 58
3-5-1 希爾伯特-黃轉換 59
3-5-2 經驗模態分解法 59
3-5-3 希爾伯特轉換 63
3-5-4 頻帶功率與機率密度函數 66
3-5-5 接受者操作特徵曲線 67
3-5-6 重複量數變異數分析法 70
第四章 實驗結果與討論 73
4-1 腦波分析結果 75
4-1-1 照明實驗一 77
4-1-2 照明實驗二 82
4-1-3 照明實驗三 93
4-2 客觀結果討論 103
4-3 主觀結果討論 108
4-4 主客觀結果比較 118
第五章 結論與未來展望 119
5-1 結論 119
5-2 未來展望 120
參考文獻 122
附錄一 中文智力測驗內容範例 127
附錄二 主觀評估情境體驗問卷 133
附錄三 臺灣大學研究倫理審查核可證明書 135
附錄四 中文智力測驗答題率統計 136
參考文獻 [1] S. Nakamura, M. Senoh, and T. Mukai. P-GaN/N-InGaN/N-GaN doubleheterostructure blue-light-emitting diodes. Japanese Journal of Applied Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
[2] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives of Ophthalmology, 110(1):99–104, 1992.
[3] K. E. West et al. Blue light from light-emitting diodes elicits a dosedependent suppression of melatonin in humans. Journal of Applied Physiology, 110(3):619–626, 2011.
[4] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical meaning for lighting for work. Applied Ergonomics, 37(4):461–466, 2006.
[5] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of visual and biological effects. Lighting Research and Technology, 36(4):255– 266, 2004.
[6] 蘇慧貞,「室內環境品質及生物性危害與防治」,2007病態建築診斷機制教育宣導講習會,台北,2007年11月。
[7] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, 2012.
[8] Koninklijke Philips Electronics N.V., Feel good, learn better with SchoolVision, 2011.
[9] M. S. Mott et al. Illuminating the effects of dynamic lighting on student learning. SAGE Open, 2, 2012.
[10] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting Research and Technology, 50, 2016.
[11] J. Y. Shin et al. Analysis of the effect on attention and relaxation level by correlated color temperature and illuminance of LED lighting using EEG signal. Journal of the Korean Institute of IIIuminating and Electrical Instal- lation Engineers, 27(5):9–17, 2013.
[12] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
[13] D. C. Fernandez et al. Light affects mood and learning through distinct retina-brain pathways. Cell, 175(1):71–84.e18, 2018.
[14] P. Khademagha et al. Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment, 108(1):263–272, 2016.
[15] LumosTech. The science behind adjusting your circadian rhythm with light.Source: https://reurl.cc/g7qE3b.
[16] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
[17] I. Provencio, G. Jiang, W. De Grip, W. Hayes, and M. Rollag. Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America, 95(1): 340-345, 1998.
[18] M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman. A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2): 213-228, 2005.
[19] M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner. Modelling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4): 386-396, 2012.
[20] M.S. Rea and M.G. Figueiro, Light as a circadian stimulus for architectural lighting, Lighting Research and Technology, 50(4): 497-510, 2018.
[21] M. S. Islam, R. Dangol, M. Hyva′rinen, P. Bhusal, M. Puolakka, and L. Halonen. User acceptance studies for LED office lighting: Lamp spectrum, spatial brightness and illuminance. Lighting Research & Technology, 47:54-79, 2015.
[22] M. Wang, M. R. Luo, S. Zheng, J. Qiang, and H. Wang. Influence of circadian stimulus and colour temperature on children’s study performance and fatigue. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 6-10, Taipei, Taiwan, 2018.
[23] C. W. Lin, F. M. Hsu, C. J. Chou, H. S. Chen, and M. R. Luo. Office lighting design in consideration of eye fatigue and task performance. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 19-28, Taipei, Taiwan, 2018.
[24] CS calculator. Source: https://www.lrc.rpi.edu/cscalculator/
[25] 網路資料,取自:https://www.lrc.rpi.edu/healthyliving/#section-whatIsCircadianLighting
[26] R.J. Lucas, S.N. Peirson, D.M. Berson, T.M. Brown, H.M. Copper, C.A. Czeisler,M.G. Figueiro, P.D. Gamlin, S.W. Lockley, J.B. O′Hagan, L.L.A. Price, I. Provencio,D.J. Skene, G.C. Brainard, Measuring and using light in the melanopsin age, TrendsNeurosci. 37 (2014) 1–9.
[27] International Well Building Institute - Table L2:Melanopic and Visual Response, https://standard.wellcertified.com/tables#melanopicRatio, accessed July 2021.
[28] Circadian lighting design - WELL v1 Standard https://standard.wellcertified.com/light/circadian-lighting-design
[29] J.-H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge.
[30] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition. Taylor and Francis, 1995.
[31] H. Yoshitake. Relations between the symptoms and the feeling of fatigue. Ergonomics, 14(1):175–186, 1971.
[32] R. Likert. A technique for the measurement of attitudes. Archives of psychology.Columbia university, 1932.
[33] M. A. Robinson. Using multi-item psychometric scales for research and practice in human resource management. Human Resource Management, 57(3):739–750, 2018.
[34] S. Mack et al. Principles of Neural Science, Fifth Edition. McGraw-Hill Education, 2013.
[35] H. H. Suzana. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3:31, 2009.
[36] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
[37] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[38] G. Buzs´aki. Rhythms of the Brain. Oxford ; New York : Oxford University Press, 2006.
[39] B. McDermott et al. Gamma band neural stimulation in humans and the promise of a new modality to prevent and treat Alzheimer’s disease. Journal of Alzheimer’s Disease, 65(2):363–392, 2018.
[40] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[41] G. H. Klem et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52:3–6, 1999.
[42] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
[43] A. Llenas and J. Carreras, “Arbitrary spectral matching using multi-LED lighting systems,” Optical Engineering, 58(3), 035105, 2019.
[44] W. Hu and Wendy Davis, “Spectral optimization for human-centric lighting using a genetic algorithm and a modified Monte Carlo method,” OSA Advanced Photonics Congress (AP) 2020, paper PvM2G.4, Washington, United States, July 13–16, 2020.
[45] Y. J. Tam, V. Kalavally, and J. Parkkinen, “Mixed-Color LED Lighting with Circadian Benefits,” LS14, Como, Italy, January, 2014.
[46] 基因演算法Source:https://dotblogs.com.tw/dragon229/2013/01/03/86692
[47] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach. SAGE Publications, 2016.
[48] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures? Source: https://reurl.cc/r88xnr.
[49] Min Li, Peiyu Wu, Jianhua Ding, Qi Yao, and Jiaqi Ju, The circadian effect versus mesopic vision effect in road lighting applications. Appl. Sci. 27(5):7–9, 2020.
[50] LEDCube. Source: http://www.thouslite.com/PRODUCTS/16.html.
[51] NeuroSky. MindWave Mobile: User Guide, 2015.
[52] MindWave mobile. Source: https://www.me100fun.com.hk/products/neurosky-mindwave-mobile-2.
[53] 網路資料,取自:https://www.kfsh.hc.edu.tw/uploads/article/3511/20190514165816.pdf
[54] N. E. Huang et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454:903–995, 1998.
[55] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series. Source: https://reurl.cc/ZO6zo3.
[56] 陳佑榮,「應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理」,國立中央大學,碩士論文,民國104年。
[57] 洪暉程,「總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用」,國立中央大學,碩士論文,民國97年。
[58] 柯景瀚,「不同聲音或照明情境下室內靜態工作之專注程指標開發」,國立中央大學,碩士論文,民國 110 年。
[59] E. R. Girden. ANOVA: Repeated measures. Sage Publications, 1992.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明