參考文獻 |
參考文獻
[1] 2020/2021年產業技術白皮書,產業篇,經濟部技術處,(2020).
[2] 2021/2022年產業技術白皮書,產業篇,經濟部技術處,(2021).
[3]Chi-Chung Lau, Si-Min Chou (2019). 結構光三維成像及其編碼技術.科儀新知, 219(6), 25–37.
[4]詳解黑科技「結構光」,第三種測量方法
Available: https://reurl.cc/yrNX6a
[5]微陣列透鏡
Available: https://reurl.cc/gW0n34
Available: https://reurl.cc/KbYD0n
[6]自由曲面元件
Available: https://reurl.cc/o12XV5
[7]Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics. Optik & Photonik, 12(3), 42–45.
[8]Neelesh K. Jain, Mayur S. Sawant,Sagar H. Nikam and Suyog Jhavar(2016). Metal Deposition: Plasma-Based Processes.Encyclopedia of Plasma Technology,722-740.
[9]Loyer, F., Bulou, S., Choquet, P., & Boscher, N. D. (2018). Pulsed plasma initiated chemical vapor deposition (PiCVD) of polymer layers − A kinetic model for the description of gas phase to surface interactions in pulsed plasma discharges. Plasma Processes and Polymers, 1800121.
[10]Wei, D., Lu, Y., Han, C., Niu, T., Chen, W., & Wee, A. T. S. (2013). Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie, 125(52), 14371–14376.
[11]Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., … Wee, A. T. S. (2015). Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 9(1), 164–171.
[12]Profijt, H. B., Potts, S. E., van de Sanden, M. C. M., & Kessels, W. M. M. (2011). Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5), 050801.
[13]Kim, H. (2011). Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films, 519(20), 6639–6644.
[14] Shi, S., Qian, S., Hou, X., Mu, J., He, J., & Chou, X. (2018). Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition. Advances in Condensed Matter Physics, 2018, 1–10.
[15]Leskelä, M., & Ritala, M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 409(1), 138–146.
[16]Pakkala, A., & Putkonen, M. (2010). Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings, 364–391.
[17]Schindler, P., Logar, M., Provine, J., & Prinz, F. B. (2015). Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition. Langmuir, 31(18), 5057–5062.
[18]Heil, S. B. S., van Hemmen, J. L., Hodson, C. J., Singh, N., Klootwijk, J. H., Roozeboom, F., … Kessels, W. M. M. (2007). Deposition of TiN and HfO[sub 2] in a commercial 200 mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(5), 1357.
[19]原子層沉積技術之發展與應用
Available: https://reurl.cc/YvNnv4
[20]Dayal, P., Savvides, N., & Hoffman, M. (2009). Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films, 517(13), 3698–3703.
[21]Costescu, R. M. (2004). Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates. Science, 303(5660), 989–990.
[22]Mata, M., Anglada, M., & Alcalá, J. (2002). Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain. Journal of Materials Research, 17(05), 964–976.
[23]Misra, A., & Krug, H. (2001). Deformation Behavior of Nanostructured Metallic Multilayers. Advanced Engineering Materials, 3(4), 217–222.
[24]Misra, A., Hirth, J. P., & Hoagland, R. G. (2005). Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia, 53(18), 4817–4824.
[25]Rao, S. I., & Hazzledine, P. M. (1999). Atomistic Simulations of Dislocation-Interface Interactions in the Cu-Ni Multilayer System. MRS Proceedings, 578.
[27]Zhou, Q., Xie, J. Y., Wang, F., Huang, P., Xu, K. W., & Lu, T. J. (2015). The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mechanica Sinica, 31(3), 319–337.
[28]Coy, E., Yate, L., Kabacińska, Z., Jancelewicz, M., Jurga, S., & Iatsunskyi, I. (2016). Topographic reconstruction and mechanical analysis of atomic layer deposited Al2O3/ TiO2 nanolaminates by nanoindentation. Materials & Design, 111, 584–591.
[29]Zhang, J. Y., Zhang, P., Zhang, X., Wang, R. H., Liu, G., Zhang, G. J., & Sun, J. (2012). Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Materials Science and Engineering: A, 545, 118–122.
[30]Wen, S. P., Zong, R. L., Zeng, F., Gao, Y., & Pan, F. (2007). Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. Journal of Materials Research, 22(12), 3423–3431..
[31]Mara, N. A., Bhattacharyya, D., Hoagland, R. G., & Misra, A. (2008). Tensile behavior of 40nm Cu/Nb nanoscale multilayers. Scripta Materialia, 58(10), 874–877.
[32]Lu, Y. Y., Kotoka, R., Ligda, J. P., Cao, B. B., Yarmolenko, S. N., Schuster, B. E., & Wei, Q. (2014). The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia, 63, 216–231.
[33]Zhang, J. Y., Zhang, X., Wang, R. H., Lei, S. Y., Zhang, P., Niu, J. J., … Sun, J. (2011). Length-scale-dependent deformation and fracture behavior of Cu/X (X=Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Materialia, 59(19), 7368–7379.
[34]Was, G. ., & Foecke, T. (1996). Deformation and fracture in microlaminates. Thin Solid Films, 286(1-2), 1–31.
[35]Hsia, K. J., Suo, Z., & Yang, W. (1994). Cleavage due to dislocation confinement in layered materials. Journal of the Mechanics and Physics of Solids, 42(6), 877–896.
[36]Odette, G. R., Chao, B. L., Sheckherd, J. W., & Lucas, G. E. (1992). Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite. Acta Metallurgica et Materialia, 40(9), 2381–2389.
[37]Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science & Technology.
[38]Zhou, X., & Chen, C. (2016). Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 80, 75–85.
[39]Paul, P., Pfeiffer, K., & Szeghalmi, A. (2020). Antireflection Coating on PMMA Substrates by Atomic Layer Deposition. Coatings, 10(1), 64.
[40]Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422–1426.
[41]Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2016). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied Optics, 56(4), C47.
[42]Kim, L. H., Jang, J. H., Jeong, Y. J., Kim, K., Baek, Y., Kwon, H., … Park, C. E. (2017). Highly-impermeable Al2O3 /HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 50, 296–303.
[43]Kim, K.-M., Jang, J. S., Yoon, S.-G., Yun, J.-Y., & Chung, N.-K. (2020). Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition. Materials, 13(9), 2008.
[44]Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模組開發. 科儀新知, 33(6), 40–48.
[45]橢圓偏振儀
Available: https://reurl.cc/g2yE5V
[46]可程式恆溫恆濕機
Available: https://reurl.cc/e316yM
[47]李其紘. (2013). 原子力顯微鏡的基本介紹. 科學研習, 52(5), 18–21.
[48]複式光學顯微鏡
Available: https://reurl.cc/NAkAAn
[49]李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
[50]越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術
Available: https://reurl.cc/9G2a8v
[51]Iatsunskyi, I., Coy, E., Viter, R., Nowaczyk, G., Jancelewicz, M., Baleviciute, I., … Jurga, S. (2015). Study on Structural, Mechanical, and Optical Properties of Al2O3 -TiO2 Nanolaminates Prepared by Atomic Layer Deposition. The Journal of Physical Chemistry C, 119(35), 20591–20599. |