博碩士論文 109329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.143.9.115
姓名 游易程(Yi-Cheng Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
(NiO-LSCF Nanofibrous Cathode Electrode for Proton-conducting Solid Oxide Electrochemical Cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質子傳輸型固態氧化物燃料電池(Proton-conducting solid oxide fuel cells, P-SOFCs)於工作溫度範圍(500-800 ℃)擁有優秀的質子傳導性、化學穩定性與電池密封性。但隨著工作溫度降低,會導致陰極電極的氧化還原能力(ORR)下降。由於NiO材料具有優秀的氧離子導率與表面氧交換能力,讓陰極電極側可以快速地解離氧氣和傳輸氧離子,以此有效提高電化學電池之性能,並且減少陰極電極之阻抗。
於本研究中,將使用不同X wt% NiO-LSCF (X=0, 10, 15, 20)奈米纖維作為P-SOFC的陰極電極。結果表示,NiO奈米顆粒在於LSCF纖維表面可以有效提升電池性能,因為NiO不僅擁有優良的離子導率,提供表面氧交換速率,其可以加速氧氣在形成氧離子過程中吸附、脫附與解離反應,以此來降低氧氣催化反應與氧離子傳輸到電解質界面處之極化阻抗。
15 wt% NiO-LSCF纖維電池於800°C 下進行性能測量,可得到最高功率密度約為477.6 mW/cm2,與純LSCF纖維電池相比高 18.5%,其原因為歐姆阻抗和極化阻抗分別降低了為26% 和71%。另一方面,在SOEC模式下進行15 wt% NiO-LSCF電解電池(Electrolyzer cell, EC),先在陰極電極側電解水氣,而後在陽極電極側產生氫氣,法拉第效率(FE)與能量轉換效率(ECE)為69%與68%,其產氫的速率則為7.82 ml/min。
本研究結果顯示,15 wt% NiO-LSCF奈米纖維在P-SOFC中不僅擁有優秀的氧氣解離與氧離子傳輸之速率,於800 ℃下進行FC模式時,其電池之性能具有最高功率密度為477.6 mW/cm2。故15 wt% NiO-LSCF纖維電池成功應用於FC與EC模式,而15 wt% NiO-LSCF纖維陰極將提供P-SOFC裝置商業化發展之可能性。
摘要(英) P-SOFCs have excellent proton conductivity, chemical stability, and better sealing in the operating temperature range (500-800 °C). However, with the operating temperature decreasing, the oxygen reduction reaction capability of the cathode electrode will be lower. Due to the superior oxygen-ionic conductivity and surface oxygen exchange capability of NiO nanoparticles, the cathode electrode will generate faster oxygen dissociation and offer the oxygen surface transport paths. NiO nanoparticles can effectively improve the electrochemical cell’s performance and reduce the cathode electrode’s impedance.
In this study, different content NiO such as X wt% NiO-LSCF (X=0, 10, 15, 20) nanofibers were used as the cathode electrode of P-SOFC. The results show that NiO nanoparticles on the surface of LSCF fibers can efficiently improve the performance of cell. NiO not only has excellent ionic conductivity and surface oxygen exchange rate but also accelerates the adsorption, desorption, and dissociation of oxygen. The NiO-LSCF nanofibrous cells will reduce the polarization resistance, which is about oxygen catalytic reaction and oxygen-ionic ‎transportation to the electrolyte interface.
At 800 °C, the performance test of the 15 wt% NiO-LSCF nanofibrous cell obtains a max. power density of 477.6 mW/cm2. It is higher 18.5% than the pure LSCF nanofibrous cell because ohmic impedance and polarization impedance are reduced by about 26% and 71%. In SOEC mode, the 15 wt% NiO-LSCF electrolyzer cell, which is H2O electrolysis at the cathode electrode and H2 generation at the anode electrode, has the Faraday′s efficiency and energy conversion efficiency of 69% and 68%. On the other hand, the hydrogen evolution rate of 15 wt% NiO-LSCF nanofiber cell is up to 7.82 ml/min.
This study shows that 15 wt% NiO-LSCF nanofibers not only have excellent oxygen dissociation and oxygen-ionic transportation rate in P-SOFC but also have a max. power density of 477.6 mW/cm2 at 800 °C. Therefore, 15 wt% NiO-LSCF cell has been successfully applied in FC and EC modes. The 15 wt% NiO-LSCF nanofibrous cathode will provide the possibility for commercial development of P-SOFC devices in the future.
關鍵字(中) ★ NiO-LSCF纖維
★ 複合纖維
★ 陰極電極
★ 表面氧交換
★ 固態氧化物燃料電池
關鍵字(英) ★ NiO-LSCF fibers
★ composite nanofibers
★ cathode electrode
★ surface oxygen exchange
★ P-SOFCs
論文目次 目錄
摘要 i
Abstract iii
目錄 vi
圖目錄 x
表目錄 xii
前言 1
第一章 緒論 3
1.1. P-SOFC簡介 3
1.1.1. P-SOFC電池之工作原理 3
1.1.2. P-SOFC電池之結構 6
1.2. P-SOEC簡介 9
1.2.1. P-SOEC電池之工作原理 9
1.2.2. P-SOEC電池之結構 11
1.3. P-SOFC陰極材料與工作原理 12
1.3.1. 陰極材料介紹 12
1.3.2. 陰極表面修飾材料介紹 14
1.3.3. MIEC(MOEC)傳輸機制 15
1.3.4. 鈣鈦礦性質與結構 16
1.4. 纖維紡織技術 17
1.4.1. 纖維紡織原理 17
1.4.2. 纖維紡織參數 19
1.5. P-SOFC電解質之合成及燒結 21
1.5.1. P-SOFC電解質之粉末製作 22
1.5.2. 電解質燒結理論 22
1.6. P-SOFC電池製作 24
1.6.1. 電池乾壓成型 24
1.6.2. 電池刮刀成型 24
1.6.3. 電池旋轉塗佈 25
1.7. 電化學分析機制 26
1.7.1. 極化曲線工作原理 26
1.7.2. 阻抗頻譜工作原理 28
1.7.3. 擬合等效電路工作原理 29
第二章 實驗方法 31
2.1 實驗藥品 31
2.2. 實驗方法與流程 32
2.2.1. 電池粉末合成 32
2.2.2. 刮刀塗佈製備陽極基板 33
2.2.3. 纖維陰極電極製作 34
2.2.4. 全電池製備 35
2.3. 材料分析儀器 37
2.3.1. X光粉末繞射儀(X-ray powder diffraction, XRPD) 37
2.3.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 38
2.3.3. 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 38
2.4. 全電池I-V 性能之測量步驟 39
2.5. 阻抗頻譜之測量步驟 40
第三章 實驗結果與討論 41
3.1. 全電池材料之相分析 41
3.1.1. 電解質材料之相分析 41
3.1.2. 電極材料之相分析 42
3.2. 電極材料之微結構分析 44
3.2.1. NiO-LSCF纖維陰極之表面分析 44
3.2.2. NiO-LSCF纖維陰極之截面分析 47
3.3. 全電池I-V 測量步驟與性能分析 49
3.4. 全電池之EIS測量步驟與阻抗分析 51
3.5. 全電池之穩定性分析 59
3.6. 全電池之法拉第效率與能量轉換效率分析 60
第四章 結論 65
第五章 參考文獻 67


圖目錄
圖1- 1:P-SOFCs可逆電化學裝置。 2
圖1- 2:O-SOFC/P-SOFC之操作原理示意圖。 4
圖1- 3:O-SOEC/P-SOEC之操作原理示意圖。 10
圖1- 4:P-SOFC陰極電極傳導示意圖。 13
圖1- 5:鈣鈦礦結構之示意圖。 17
圖1- 6:纖維紡織技術之示意圖。 18
圖1- 7:泰勒錐紡織過程之示意圖。 19
圖1- 8:前驅物表面電荷示意圖。 20
圖1- 9:粉末燒結之示意圖。 23
圖1- 10:乾壓成型之示意圖。 24
圖1- 11:刮刀成型之示意圖。 25
圖1- 12:旋轉塗佈之示意圖。 25
圖1- 13:典型燃料電池之極化I-V曲線圖。 28
圖1- 14:電化學阻抗複數平面示意圖。 29
圖2- 1:電解質粉末之合成流程圖。 33
圖2- 2:纖維紡絲技術之製程圖。 35
圖2- 3:半電池製作之流程圖。 36
圖2- 4:陰極電極製備之流程圖。 36
圖2- 5: P-SOFC測量步驟與平台示意圖。 40
圖3- 1:XRD圖於1250 ℃煆燒後BCZY622之電解質粉末。 41
圖3- 2:XRD圖於800 ℃ 煆燒後純LSCF nanofiber與15 wt% NiO-LSCF nanofiber。 43
圖3- 3:XRD圖 (a)電解質;(b)陽極電極。 44
圖3- 4:纖維陰極表面之SEM分析。 45
圖3- 5:15 wt% NiO-LSCF纖維之TEM分析。 46
圖3- 6:15 wt% NiO-LSCF奈米纖維EDS mapping之結果。 47
圖3- 7:纖維陰極截面之SEM影像分析。 48
圖3- 8:全電池之I-V曲線與功率密度測量結果。 50
圖3- 9:全電池電化學阻抗分析結果。 56
圖3- 10:NiO-LSCF奈米纖維電極之離子電子混合導體機制圖。 58
圖3- 11:15 wt% NiO-LSCF與LSCF之奈米纖維陰極於700 ℃進行24小時之長時間性能穩定性測試。 60
圖3- 12:15 wt% NiO-LSCF電池於800 ℃下,操作SOFC模式與SOEC模式之I-V曲線圖。 61
圖3- 13:15 wt% NiO-LSCF電池在800 ℃下,所測得之漏電流(圓形)與真實電解電流(三角形)。 62


表目錄
表1- 1:陰極材料之電子與離子導電率比較。 14
表1- 2:陰極材料之純氧離子導電率比較。 15
表1- 3:陰極電極之基本反應步驟。 15
表2- 1:實驗藥品對照表。 31
表2- 2:四種陰極電極組成參數。 37
表3- 1:四種陰極纖維電極組成參數。 48
表3- 2:四種陰極電極之電池阻抗。 57
表3- 3:15 wt% NiO-LSCF電池P-SOEC模式測得之數據表。 63
表3- 4:可逆循環反應能量轉換效率計算。 63
參考文獻 [1]S. Iida, K. Sakata, "Hydrogen technologies and developments in Japan", Clean Energy, 3(2019)105-113.
[2]J. Moore, B. Shabani, "A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies", Energies, 9(2016)674.
[3]M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, "Renewable Power-to-Gas: A technological and economic review", Renew. Energ., 85(2016)1371-1390.
[4]C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production", Nat. Energy, 4(2019)230-240.
[5]L. Barelli, G. Bidini, G. Cinti, "Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis", Chem. Eng., 1(2017)13.
[6]O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, "Future cost and performance of water electrolysis: An expert elicitation study", Int. J. Hydrog. Energy, 42(2017)30470-30492.
[7]N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review", Prog. Mater. Sci., 72(2015)141-337.
[8]S. Anwar, F. Khan, Y. Zhang, A. Djire, "Recent development in electrocatalysts for hydrogen production through water electrolysis", Int. J. Hydrog. Energy, 46(2021)32284-32317.
[9]J. Chi, H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese J. Catal., 39(2018)390-394.
[10]J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T. H. Lim, G. Kim, "Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production", Nano Energy, 44(2018)121-126.
[11]A. Ozawa, Y. Kudoh, "Performance of residential fuel-cell-combined heat and power systems for various household types in Japan", Int. J. Hydrog. Energy, 43(2018)15412-15422.
[12]J. Eichman, F. Flores-Espino, "California Power-to-Gas and Power-to-Hydrogen Near-Term Business Case Evaluation", (2016) Contract No: DE-AC36-08GO28308.
[13]T. Kashiwagi, "Creating a “Hydrogen Society” to Protect the Global Environment", The Government of Japan, (2017).
[14]A. D′Epifanio, E. Fabbri, E. D. Bartolomeo, S. Licoccia, E. Traversa, "Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)", Fuel Cells, 8(2008)69-76.
[15]F. Iguchi, N. Sata, H. Yugami, "Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC", J. Mater. Chem., 20(2010)6265-6270.
[16]S. S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad, "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells", Renew. Sustain. Energy Rev., 79(2017)750-764.
[17]L. Malavasi, C. A. Fisher, M. S. Islam, "Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features", Chem Soc Rev, 39(2010)4370-4387.
[18]J. Lv, L. Wang, D. Lei, H. Guo, R. V. Kumar, "Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3−δ (M=In, Y, Gd, Sm)", J. Alloys Compd., 467(2009)376-382.
[19]E. Fabbri, D. Pergolesi, E. Traversa, "Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells", Sci Technol Adv Mater, 11(2010)044301.
[20]W. Q, J. Hou, Y. Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Z. Fu, J. L. Luo, "Pr2BaNiMnO7−δ double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells", J. Mater. Chem. A, 8(2020)7704-7712.
[21]Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, "Improved SOFC performance with continuously graded anode functional layer", Electrochem. commun., 11(2009)1120-1123.
[22]H. I. Ji, J. H. Lee, J. W. Son, J. K. Yoon, S. Yang, B. K. Kim, "Protonic ceramic electrolysis cells for fuel production: a brief review", J. Korean Ceram. Soc., 57(2020)480-494.
[23]J. L. Young, V. I. Birss, "Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells", J. Power Sources, 196(2011)7126-7135.
[24]A. A. Samat, M. Darus, N. Osman, N. A. Baharuddin, M. Anwar, "A short review on triple conducting oxide cathode materials for proton conducting solid oxide fuel cell", AIP Conf Proc, 2339(2021)020233.
[25]A. V. Nikonov, K. A. Kuterbekov, K. Zh.Bekmyrza, N. B. Pavzderin, "A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode", Eurasian j. phys. funct. mater., 2(2018)274-292.
[26]B. Fan, J. Yan, X. Yan, "The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material", Solid State Sci., 13(2011)1835-1839.
[27]K. Conder, "Electronic and ionic conductivity in metal oxides", Paul Scherrer Institute, (2012)1-44.
[28]M. A. Khan, E. U. Haq, M. S. Javed, C. Xu, S. S. A. Shah, M. A. Nazir, M. Imran, M. A. Assiri, A. Ahmad, S. Hussain, "Facile synthesis of ceria-based composite oxide materials by combustion for high-performance solid oxide fuel cells", Ceram. Int., 47(2021)22035-22041.
[29]H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, "Electrolyte materials for intermediate-temperature solid oxide fuel cells", Prog. Nat. Sci., 30(2020)764-774.
[30]G. H. Meier, R. A. Rapp, "Electrical Conductivities and Defect Structures
of Pure NiO and Chromium-Doped NiO", Zeitschrift für Physikalische Chemie, 74(1971)168-189.
[31]W. Zhang, Y. H. Hu, "Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices", Energy Sci. Eng., 9(2021)984-1011.
[32]M. S. Islam, B. C. Ang, A. Andriyana, A. M. Afifi, "A review on fabrication of nanofibers via electrospinning and their applications", SN Applied Sciences, 1(2019)1-16.
[33]H. S. SalehHudin, E. N. Mohamad, W. N. L. Mahadi, A. M. Afifi, "Multiple-jet electrospinning methods for nanofiber processing: A review", Mater. Manuf. Process., 33(2017)479-498.
[34]R. Ghelich, M. K. Rad, A. A. Youzbashi, "Study on Morphology and Size Distribution of Electrospun NiO-GDC Composite Nanofibers", Eng. Fibers Fabr., 10(2015)155892501501000102.
[35]V. Beachley, X. Wen, "Effect of electrospinning parameters on the nanofiber diameter and length", Mater Sci Eng C Mater Biol Appl, 29(2009)663-668.
[36]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer, 43(2002)4403-4412.
[37]A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, P. Chen, "Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties", Compos Sci Technol, 70(2010)703-718.
[38]S. T. Aruna, L. S. Balaji, S. S. Kumar, B. S. Prakash, "Electrospinning in solid oxide fuel cells – A review", Renew. Sustain. Energy Rev., 67(2017)673-682.
[39]J. Xue, T. Wu, Y. Dai, Y. Xia, "Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications", Chem Rev, 119(2019)5298-5415.
[40]X. Chi, Z. Wen, J. Zhang, Y. Liu, "A novel facile way to synthesize proton-conducting Ba(Ce,Zr,Y)O3 solid solution with improved sinterability and electrical performance", J. Eur. Ceram. Soc., 35(2015)2109-2117.
[41]X. Sun, S. Li, J. Sun, "Solid-state synthesis and electrochemical properties of SmVO4 cathode materials for low temperature SOFCs", Rare Metals, 25(2006)240-242.
[42]J. Dąbrowa, A. Olszewska, F. Falkenstein, C. Schwab, M. Szymczak, M. Zajusz, M. Moździerz, A. Mikuła, K. Zielińska, K. Berent, T. Czeppe, M. Martin, K. Świerczek, "An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method", J. Mater. Chem. A, 8(2020)24455-24468.
[43]K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, "Protonic conduction in Zr-substituted BaCeO3", Solid State Ion, 138(2000)91-98.
[44]R. M. German, "Thermodynamics of sintering", Sintering of Advanced Materials, (2010)3-32.
[45]D. Kumar, K. Singh, "Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets", Mater. Manuf. Process., 30(2015)1329-1341.
[46]L. Ren, X. Luo, H. Zhou, "The tape casting process for manufacturing low‐temperature co‐fired ceramic green sheets: A review", J. Am. Ceram. Soc., 101(2018)3874-3889.
[47]M. Jabbari, R. Bulatova, A. I. Y. Tok, C. R. H. Bahl, E. Mitsoulis, J. H. Hattel, "Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis", Mater. Sci. Eng. B., 212(2016)39-61.
[48]J. Shojaeiarani, D. S. Bajwa, N. M. Stark, T. M. Bergholz, A. L. Kraft, "Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals", SM&T, 26(2020)e00212.
[49]Z. Li, Z. Zheng, L. Xu, X. Lu, "A review of the applications of fuel cells in microgrids: opportunities and challenges", BMC Energy, 1(2019)1-23.
[50]K. Huang, J. B. Goodenough, "Voltage losses in a solid oxide fuel cell (SOFC)", Solid Oxide Fuel Cell Technology, (2009)98.
[51]R. P Ramasamy, N. Sekar, "Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization", J. Microb. Biochem. Technol., 6(2013)1-14.
[52]C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, "Fabrication and characterization of an anode-supported hollow fiber SOFC", J. Power Sources, 187(2009)90-92.
[53]D. Cao, M. Zhou, X. Yan, Z. Liu, J. Liu, "High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte", Electrochem. commun., 125(2021)106986.
[54]H. Nakajima, T. Kitahara, "Real-Time Electrochemical Impedance Spectroscopy Diagnosis of the Marine Solid Oxide Fuel Cell", J. Phys. Conf. Ser., 745(2016)032149.
[55]F. Baumann, J. Fleig, H. Habermeier, J. Maier, "Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes", Solid State Ion., 177(2006)1071-1081.
[56]A. Aytimur, S. Koçyiğit, İ. Uslu, "Calcia Stabilized Ceria Doped Zirconia Nanocrystalline Ceramic", J. Inorg. Organomet. Polym. Mater., 24(2014)927-932.
[57]Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding, B. Zhao, S. Yoo, D. Dang, R. Hu, C. Yang, M. Liu, "A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells", Adv. Energy Mater., 7(2017)1601890.
[58]M. Lubini, E. Chinarro, B. Moreno, J. R .Jurado, V. C. d.Sousa, A. K. Alves, J. L. D. Ribeiro, C. P. Bergmann, "Electrochemical characteristics of La 0.6 Sr 0.4 Co 1−y Fe y O 3 (y=0.2–1.0) fiber cathodes", Ceram. Int., 43(2017)8715-8720.
[59]Y. Song, Y. Chen, M. Xu, W. Wang, Y. Zhang, G. Yang, R. Ran, W. Zhou, Z. Shao, "A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly", Adv Mater, 32(2020)1906979.
[60]M. Nadeem, B. Hu, C. Xia, "Effect of NiO addition on oxygen reduction reaction at lanthanum strontium cobalt ferrite cathode for solid oxide fuel cell", Int. J. Hydrog. Energy, 43(2018)8079-8087.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2022-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明