參考文獻 |
[1]S. Iida, K. Sakata, "Hydrogen technologies and developments in Japan", Clean Energy, 3(2019)105-113.
[2]J. Moore, B. Shabani, "A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies", Energies, 9(2016)674.
[3]M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, "Renewable Power-to-Gas: A technological and economic review", Renew. Energ., 85(2016)1371-1390.
[4]C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production", Nat. Energy, 4(2019)230-240.
[5]L. Barelli, G. Bidini, G. Cinti, "Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis", Chem. Eng., 1(2017)13.
[6]O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, "Future cost and performance of water electrolysis: An expert elicitation study", Int. J. Hydrog. Energy, 42(2017)30470-30492.
[7]N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review", Prog. Mater. Sci., 72(2015)141-337.
[8]S. Anwar, F. Khan, Y. Zhang, A. Djire, "Recent development in electrocatalysts for hydrogen production through water electrolysis", Int. J. Hydrog. Energy, 46(2021)32284-32317.
[9]J. Chi, H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese J. Catal., 39(2018)390-394.
[10]J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T. H. Lim, G. Kim, "Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production", Nano Energy, 44(2018)121-126.
[11]A. Ozawa, Y. Kudoh, "Performance of residential fuel-cell-combined heat and power systems for various household types in Japan", Int. J. Hydrog. Energy, 43(2018)15412-15422.
[12]J. Eichman, F. Flores-Espino, "California Power-to-Gas and Power-to-Hydrogen Near-Term Business Case Evaluation", (2016) Contract No: DE-AC36-08GO28308.
[13]T. Kashiwagi, "Creating a “Hydrogen Society” to Protect the Global Environment", The Government of Japan, (2017).
[14]A. D′Epifanio, E. Fabbri, E. D. Bartolomeo, S. Licoccia, E. Traversa, "Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)", Fuel Cells, 8(2008)69-76.
[15]F. Iguchi, N. Sata, H. Yugami, "Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC", J. Mater. Chem., 20(2010)6265-6270.
[16]S. S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad, "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells", Renew. Sustain. Energy Rev., 79(2017)750-764.
[17]L. Malavasi, C. A. Fisher, M. S. Islam, "Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features", Chem Soc Rev, 39(2010)4370-4387.
[18]J. Lv, L. Wang, D. Lei, H. Guo, R. V. Kumar, "Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3−δ (M=In, Y, Gd, Sm)", J. Alloys Compd., 467(2009)376-382.
[19]E. Fabbri, D. Pergolesi, E. Traversa, "Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells", Sci Technol Adv Mater, 11(2010)044301.
[20]W. Q, J. Hou, Y. Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Z. Fu, J. L. Luo, "Pr2BaNiMnO7−δ double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells", J. Mater. Chem. A, 8(2020)7704-7712.
[21]Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, "Improved SOFC performance with continuously graded anode functional layer", Electrochem. commun., 11(2009)1120-1123.
[22]H. I. Ji, J. H. Lee, J. W. Son, J. K. Yoon, S. Yang, B. K. Kim, "Protonic ceramic electrolysis cells for fuel production: a brief review", J. Korean Ceram. Soc., 57(2020)480-494.
[23]J. L. Young, V. I. Birss, "Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells", J. Power Sources, 196(2011)7126-7135.
[24]A. A. Samat, M. Darus, N. Osman, N. A. Baharuddin, M. Anwar, "A short review on triple conducting oxide cathode materials for proton conducting solid oxide fuel cell", AIP Conf Proc, 2339(2021)020233.
[25]A. V. Nikonov, K. A. Kuterbekov, K. Zh.Bekmyrza, N. B. Pavzderin, "A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode", Eurasian j. phys. funct. mater., 2(2018)274-292.
[26]B. Fan, J. Yan, X. Yan, "The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material", Solid State Sci., 13(2011)1835-1839.
[27]K. Conder, "Electronic and ionic conductivity in metal oxides", Paul Scherrer Institute, (2012)1-44.
[28]M. A. Khan, E. U. Haq, M. S. Javed, C. Xu, S. S. A. Shah, M. A. Nazir, M. Imran, M. A. Assiri, A. Ahmad, S. Hussain, "Facile synthesis of ceria-based composite oxide materials by combustion for high-performance solid oxide fuel cells", Ceram. Int., 47(2021)22035-22041.
[29]H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, "Electrolyte materials for intermediate-temperature solid oxide fuel cells", Prog. Nat. Sci., 30(2020)764-774.
[30]G. H. Meier, R. A. Rapp, "Electrical Conductivities and Defect Structures
of Pure NiO and Chromium-Doped NiO", Zeitschrift für Physikalische Chemie, 74(1971)168-189.
[31]W. Zhang, Y. H. Hu, "Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices", Energy Sci. Eng., 9(2021)984-1011.
[32]M. S. Islam, B. C. Ang, A. Andriyana, A. M. Afifi, "A review on fabrication of nanofibers via electrospinning and their applications", SN Applied Sciences, 1(2019)1-16.
[33]H. S. SalehHudin, E. N. Mohamad, W. N. L. Mahadi, A. M. Afifi, "Multiple-jet electrospinning methods for nanofiber processing: A review", Mater. Manuf. Process., 33(2017)479-498.
[34]R. Ghelich, M. K. Rad, A. A. Youzbashi, "Study on Morphology and Size Distribution of Electrospun NiO-GDC Composite Nanofibers", Eng. Fibers Fabr., 10(2015)155892501501000102.
[35]V. Beachley, X. Wen, "Effect of electrospinning parameters on the nanofiber diameter and length", Mater Sci Eng C Mater Biol Appl, 29(2009)663-668.
[36]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer, 43(2002)4403-4412.
[37]A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, P. Chen, "Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties", Compos Sci Technol, 70(2010)703-718.
[38]S. T. Aruna, L. S. Balaji, S. S. Kumar, B. S. Prakash, "Electrospinning in solid oxide fuel cells – A review", Renew. Sustain. Energy Rev., 67(2017)673-682.
[39]J. Xue, T. Wu, Y. Dai, Y. Xia, "Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications", Chem Rev, 119(2019)5298-5415.
[40]X. Chi, Z. Wen, J. Zhang, Y. Liu, "A novel facile way to synthesize proton-conducting Ba(Ce,Zr,Y)O3 solid solution with improved sinterability and electrical performance", J. Eur. Ceram. Soc., 35(2015)2109-2117.
[41]X. Sun, S. Li, J. Sun, "Solid-state synthesis and electrochemical properties of SmVO4 cathode materials for low temperature SOFCs", Rare Metals, 25(2006)240-242.
[42]J. Dąbrowa, A. Olszewska, F. Falkenstein, C. Schwab, M. Szymczak, M. Zajusz, M. Moździerz, A. Mikuła, K. Zielińska, K. Berent, T. Czeppe, M. Martin, K. Świerczek, "An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method", J. Mater. Chem. A, 8(2020)24455-24468.
[43]K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, "Protonic conduction in Zr-substituted BaCeO3", Solid State Ion, 138(2000)91-98.
[44]R. M. German, "Thermodynamics of sintering", Sintering of Advanced Materials, (2010)3-32.
[45]D. Kumar, K. Singh, "Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets", Mater. Manuf. Process., 30(2015)1329-1341.
[46]L. Ren, X. Luo, H. Zhou, "The tape casting process for manufacturing low‐temperature co‐fired ceramic green sheets: A review", J. Am. Ceram. Soc., 101(2018)3874-3889.
[47]M. Jabbari, R. Bulatova, A. I. Y. Tok, C. R. H. Bahl, E. Mitsoulis, J. H. Hattel, "Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis", Mater. Sci. Eng. B., 212(2016)39-61.
[48]J. Shojaeiarani, D. S. Bajwa, N. M. Stark, T. M. Bergholz, A. L. Kraft, "Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals", SM&T, 26(2020)e00212.
[49]Z. Li, Z. Zheng, L. Xu, X. Lu, "A review of the applications of fuel cells in microgrids: opportunities and challenges", BMC Energy, 1(2019)1-23.
[50]K. Huang, J. B. Goodenough, "Voltage losses in a solid oxide fuel cell (SOFC)", Solid Oxide Fuel Cell Technology, (2009)98.
[51]R. P Ramasamy, N. Sekar, "Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization", J. Microb. Biochem. Technol., 6(2013)1-14.
[52]C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, "Fabrication and characterization of an anode-supported hollow fiber SOFC", J. Power Sources, 187(2009)90-92.
[53]D. Cao, M. Zhou, X. Yan, Z. Liu, J. Liu, "High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte", Electrochem. commun., 125(2021)106986.
[54]H. Nakajima, T. Kitahara, "Real-Time Electrochemical Impedance Spectroscopy Diagnosis of the Marine Solid Oxide Fuel Cell", J. Phys. Conf. Ser., 745(2016)032149.
[55]F. Baumann, J. Fleig, H. Habermeier, J. Maier, "Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes", Solid State Ion., 177(2006)1071-1081.
[56]A. Aytimur, S. Koçyiğit, İ. Uslu, "Calcia Stabilized Ceria Doped Zirconia Nanocrystalline Ceramic", J. Inorg. Organomet. Polym. Mater., 24(2014)927-932.
[57]Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding, B. Zhao, S. Yoo, D. Dang, R. Hu, C. Yang, M. Liu, "A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells", Adv. Energy Mater., 7(2017)1601890.
[58]M. Lubini, E. Chinarro, B. Moreno, J. R .Jurado, V. C. d.Sousa, A. K. Alves, J. L. D. Ribeiro, C. P. Bergmann, "Electrochemical characteristics of La 0.6 Sr 0.4 Co 1−y Fe y O 3 (y=0.2–1.0) fiber cathodes", Ceram. Int., 43(2017)8715-8720.
[59]Y. Song, Y. Chen, M. Xu, W. Wang, Y. Zhang, G. Yang, R. Ran, W. Zhou, Z. Shao, "A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly", Adv Mater, 32(2020)1906979.
[60]M. Nadeem, B. Hu, C. Xia, "Effect of NiO addition on oxygen reduction reaction at lanthanum strontium cobalt ferrite cathode for solid oxide fuel cell", Int. J. Hydrog. Energy, 43(2018)8079-8087. |