博碩士論文 108226023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:121 、訪客IP:18.117.8.63
姓名 鄭宥晨(You-Chen Zheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 超強耦合有機複合式垂直發光電晶體
(Ultra-Strong Coupling Organic Integrated Vertical Light-Emitting Transistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-30以後開放)
摘要(中) 本論文主要研究利用phenyl-substituted poly(p-phenylene vinylene), Ph-PPV)又稱Super Yellow來製作超強耦合垂直有機發光電晶體(Vertical Organic Light-Emitting Transistor, VOLET)並研究其物理現象。理論上,當光子與材料激發態(激子)在共振腔中進行強耦合作用,則產生偏極子(polariton)混成態和不同的能量色散分支,而拉比分裂為上下支色散曲線的最小能量差,當拉比分裂超過激子能量的20 %以上則為超強耦合狀態。
在元件製作上,我們以共振腔式倒置型高分子垂直發光電晶體的架構設計元件,依序以厚銀膜當作及閘極及下反射鏡,接著利用原子層沉積(ALD)沉積三氧化二鋁及氧化鉿作為高介電係數介電層,N型材料氧化鋅作為半導體層,其上再堆疊OLED,而OLED陽極為薄銀,作為垂直電晶體汲極及共振腔上反射鏡。
最終實驗得出偏極子電晶體的外部量子效率為1.6 %,最高亮度為1200 cd/m2,而發光集中於偏極子下支低角度,並證實拉比分裂為720 meV(耦合強度為25.8 %)的超強耦合垂直發光電晶體元件。
摘要(英) This thesis explore phenyl-substituted poly(p-phenylene vinylene), (Ph-PPV), or called Super Yellow, as the emissive layer of ultra-strongly coupled vertical organic light-emitting transistor (VOLET) and studies the physics phenomena. In theory, strong coupling of exciton and photon in the cavity would form hybrid polariton states and different energy dispersions of upper (UPB) and lower (LPB) polariton branches. The minimum energy difference between two branches is called Rabi-splitting energy. The ultra-strong coupling regime is reached when the Rabi-splitting energy exceeds 20 % of exciton energy,.
In the device fabrication, we design the microcavity of an inverted vertical light-emitting transistor, a thick silver film is used as the gate and bottom mirror. The atomic layer deposition (ALD) is employed to deposit the aluminum oxide and hafnium oxide as a double dielectric layer with high dielectric constant and N-type ZnO as the transistor channel. Finally, an inverted OLED is deposited on the ZnO layer, and a thin silver film is used as the drain and top mirror.
Finally, we demonstrate the polartion transistor with the external quantum efficiency of 1.5 %, and luminance of 2600 cd/m2. The emission is generated from the lower polariton branch at low angles, and the Rabi-splitting energy of 720 meV (coupling ratio of 25.8 %) demonstrates the ultrastrong coupling operation.
關鍵字(中) ★ 發光電晶體
★ 超強耦合
★ 偏極子元件
關鍵字(英) ★ Light-Emitting Transistor
★ Polariton
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2有機薄膜電晶體 2
1-3垂直式電晶體 3
1-4有機發光二極體 8
1-5有機偏極子元件 9
1-6研究動機與目的 11
第二章 基本原理 12
2-1垂直式有機電晶體工作原理 12
2-1-1垂直電晶體-轉換特性曲線與開/關電流比 17
2-2有機發光二極體工作原理 19
2-2-1有機發光二極體結構 19
2-2-2量子效率(Quantum Efficiency) 20
2-3 耦合理論 21
2-3-1微共振腔的光子模態 22
2-3-2光子與激子的耦合 24
第三章 實驗方法與架構 29
3-1 實驗材料介紹 29
3-1-1 介電層材料 30
3-1-2 半導體層材料 32
3-1-3 有機發光層材料 33
3-1-4 金屬材料 34
3-2 實驗儀器 35
3-2-1 手套箱(Glove Box) 35
3-2-2 熱蒸鍍機(Thermal Evaporation Coater) 36
3-2-3 原子層沉積(Atomic Layer Deposition, ALD) 37
3-2-4 外光臭氧清潔機(UV-Ozone) 38
3-2-5 手動式光罩接合對準器(Mask and Bond Aligner, MA6) 39
3-2-6 阻抗分析儀(LF Impedance Analyzer) 40
3-2-8 旋轉塗佈機(Spin Coater) 40
3-2-9 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA) 41
3-2-10光電二極體(Photodiode) 42
3-2-11光纖旋轉平台系統 43
3-3垂直發光電晶體實驗方法及製程 44
第四章 結果與討論 50
4-1光學薄膜設計 50
4-2 有機發光二極體 52
4-2-1發光二極體注入 53
4-3 氧化鋅電晶體 55
4-3-1 氧化鋅橫向電晶體 55
4-3-2 氧化鋅垂直電晶體 57
4-3-3 超強耦合有機垂直發光電晶體 58
第五章 結論與未來展望 65
參考文獻 66
參考文獻 [1] S. Toffanin et al., "Low-threshold blue lasing from silk fibroin thin films," vol. 101, no. 9, p. 091110, 2012.
[2] B. Liu, M. A. McCarthy, B. Iheanacho, W. S. Wong, and A. G. Rinzler, "21.4 L: Late‐News Paper: Recent Developments of Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for OLED Displays," in SID Symposium Digest of Technical Papers, 2013, vol. 44, no. 1, pp. 251-253: Wiley Online Library.
[3] M. Ullah et al., "Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors," vol. 5, no. 1, pp. 1-6, 2015.
[4] Y. Hu, J. Lin, L. Song, Q. Lu, W. Zhu, and X. J. S. r. Liu, "Vertical microcavity organic light-emitting field-effect transistors," vol. 6, no. 1, pp. 1-8, 2016.
[5] C. Zhang, P. Chen, and W. J. S. Hu, "Organic Light‐Emitting Transistors: Materials, Device Configurations, and Operations," vol. 12, no. 10, pp. 1252-1294, 2016.
[6] C. F. Liu, X. Liu, W. Y. Lai, and W. J. A. M. Huang, "Organic light‐emitting field‐effect transistors: device geometries and fabrication techniques," vol. 30, no. 52, p. 1802466, 2018.
[7] S. Oh, J. H. Kim, S. K. Park, C. H. Ryoo, and S. Y. J. A. O. M. Park, "Fabrication of Pixelated Organic Light‐Emitting Transistor (OLET) with a Pure Red‐Emitting Organic Semiconductor," vol. 7, no. 23, p. 1901274, 2019.
[8] M. U. Chaudhry et al., "Polymer Light‐Emitting Transistors With Charge‐Carrier Mobilities Exceeding 1 cm2 V− 1 s− 1," vol. 6, no. 1, p. 1901132, 2020.
[9] K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, and K. J. A. p. l. Kudo, "Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate," vol. 89, no. 10, p. 103525, 2006.
[10] H. Kwon, M. Kim, H. Cho, H. Moon, J. Lee, and S. J. A. F. M. Yoo, "Toward High‐Output Organic Vertical Field Effect Transistors: Key Design Parameters," vol. 26, no. 38, pp. 6888-6895, 2016.
[11] H. Yu, Z. Dong, J. Guo, D. Kim, F. J. A. a. m. So, and interfaces, "Vertical organic field-effect transistors for integrated optoelectronic applications," vol. 8, no. 16, pp. 10430-10435, 2016.
[12] G. Lee et al., "Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway," vol. 121, no. 2, p. 024502, 2017.
[13] Z. Xu, S.-H. Li, L. Ma, G. Li, and Y. J. A. P. L. Yang, "Vertical organic light emitting transistor," vol. 91, no. 9, p. 092911, 2007.
[14] B. Liu et al., "Carbon‐nanotube‐enabled vertical field effect and light‐emitting transistors," vol. 20, no. 19, pp. 3605-3609, 2008.
[15] M. McCarthy et al., "Low-voltage, low-power, organic light-emitting transistors for active matrix displays," vol. 332, no. 6029, pp. 570-573, 2011.
[16] E. M. Veziroglu and G. I. J. F. i. G. Mias, "Characterizing extracellular vesicles and their diverse RNA contents," vol. 11, p. 700, 2020.
[17] A. J. Ben‐Sasson, M. Greenman, Y. Roichman, and N. J. I. J. o. C. Tessler, "The mechanism of operation of lateral and vertical organic field effect transistors," vol. 54, no. 5‐6, pp. 568-585, 2014.
[18] L. Ma and Y. J. A. p. l. Yang, "Unique architecture and concept for high-performance organic transistors," vol. 85, no. 21, pp. 5084-5086, 2004.
[19] M. Greenman, G. Sheleg, C.-m. Keum, J. Zucker, B. Lussem, and N. J. J. o. A. P. Tessler, "Reaching saturation in patterned source vertical organic field effect transistors," vol. 121, no. 20, p. 204503, 2017.
[20] G. Sheleg, M. Greenman, B. Lussem, and N. J. J. o. A. P. Tessler, "Removing the current-limit of vertical organic field effect transistors," vol. 122, no. 19, p. 195502, 2017.
[21] H. Kleemann, A. A. Günther, K. Leo, and B. J. S. Lüssem, "High‐Performance Vertical Organic Transistors," vol. 9, no. 21, pp. 3670-3677, 2013.
[22] F. M. Sawatzki et al., "Balance of horizontal and vertical charge transport in organic field-effect transistors," vol. 10, no. 3, p. 034069, 2018.
[23] C. W. Tang and S. A. J. A. p. l. VanSlyke, "Organic electroluminescent diodes," vol. 51, no. 12, pp. 913-915, 1987.
[24] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," vol. 347, no. 6293, pp. 539-541, 1990.
[25] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. J. A. p. l. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," vol. 65, no. 21, pp. 2636-2638, 1994.
[26] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, "Strong coupling in a microcavity LED," Physical review letters, vol. 95, no. 3, p. 036401, 2005.
[27] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, and M. Mazzeo, "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime," Advanced Optical Materials, vol. 6, no. 17, p. 1800364, 2018.
[28] M. Held et al., "Ultrastrong coupling of electrically pumped near‐infrared exciton‐polaritons in high mobility polymers," vol. 6, no. 3, p. 1700962, 2018.
[29] N. Stutzmann, R. H. Friend, and H. J. S. Sirringhaus, "Self-aligned, vertical-channel, polymer field-effect transistors," vol. 299, no. 5614, pp. 1881-1884, 2003.
[30] Y. Fang et al., "Inkjet-printed vertical organic field-effect transistor arrays and their image sensors," vol. 10, no. 36, pp. 30587-30595, 2018.
[31] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[32] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[33] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006.
[34] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[35] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[36] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[37] D. Comoretto, Organic and hybrid photonic crystals. Springer, 2015.
[38] J. Hergenrother et al., "50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics," in Technical Digest-International Electron Devices Meeting, 2001, pp. 51-54: Institute of Electrical and Electronics Engineers Inc.
[39] T. Lanz, E. M. Lindh, and L. J. J. o. M. C. C. Edman, "On the Asymmetric Evolution of the Optical Properties of a Conjugated Polymer during Electrochemical p-and n-type Doping," vol. 5, no. 19, pp. 4706-4715, 2017.
[40] M. Z. Szymański, B. Łuszczyńska, and J. J. S. r. Ulański, "Inkjet printing of super yellow: ink formulation, film optimization, OLEDs fabrication, and transient electroluminescence," vol. 9, no. 1, pp. 1-10, 2019.
[41] S. Tseng et al., "Electron transport and electroluminescent efficiency of conjugated polymers," vol. 159, no. 1-2, pp. 137-141, 2009.
[42] B. J. P. B. Gündüz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," vol. 72, no. 12, pp. 3241-3267, 2015.
[43] D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. J. A. M. Friend, "Efficient Single‐Layer Polymer Light‐Emitting Diodes," vol. 22, no. 29, pp. 3194-3198, 2010.
[44] L. P. Lu, C. E. Finlayson, R. H. J. S. S. Friend, and Technology, "A study of tin oxide as an election injection layer in hybrid polymer light-emitting diodes," vol. 29, no. 12, p. 125002, 2014.
[45] S. Burns, J. MacLeod, T. Trang Do, P. Sonar, and S. D. J. S. r. Yambem, "Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs," vol. 7, no. 1, pp. 1-8, 2017.
[46] R. Kaçar, S. P. Mucur, F. Yıldız, S. Dabak, and E. J. N. Tekin, "Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO: PEI) nano-composite interfacial layer," vol. 28, no. 24, p. 245204, 2017.
[47] 邱國賢, "超強耦合之有機高分子電激發偏極子元件," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022.
指導教授 張瑞芬 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明