參考文獻 |
[1] G. J Offer et al., “Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system”, Energy Policy, Vol. 38, no. 1, pp. 24-29. (2010)
[2] Y. Miao et al., “Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements”, Energies, Vol. 12, pp. 1074. (2019).
[3] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, “Materials for lithium-ion battery safety”, Science advances, Vol. 4, pp. eaas9820 (2018).
[4] X.B. Cheng et al., “Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes”, Chem, Vol. 5, no. 1, pp. 74-96. (2019)
[5] X. Wu et al., “Safety Issues in Lithium Ion Batteries: Materials and Cell Design”, Frontiers in Energy Research, Vol. 7. (2019)
[6] L. Yue et al., “All solid-state polymer electrolytes for high-performance lithium ion batteries”, Energy Storage Materials, Vol. 5, pp. 139-164. (2016)
[7] P.V. Wright et al., “Electrical Conductivity in Ionic Complexes of Poly(ethy1ene oxide) ”, Polymer International, Vol. 7, pp. 319-327. (1975)
[8] M.Z. A. Munshi, B. B. Owens, “Ionic Transport in Poly(ethylene oxide) (PEO)-LiX Polymeric Solid Electrolyte”, Polymer Journal, Vol. 20, no. 7, pp. 577-586. (1988)
[9] L. Li, Y. Deng, and G. Chen, “Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries”, Journal of Energy Chemistry, Vol. 50, pp. 154-177. (2020).
[10] Y. Wu et al., “Advances and prospects of PVDF based polymer electrolytes”, Journal of Energy Chemistry, Vol 64, pp. 62-84. (2022)
[11] Y. Zhang et al., “Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation”, RSC Advances, Vol. 7, pp. 56183-56193. (2017)
[12] P. Periasamy et al., “Studies on PVdF-based gel polymer electrolytes”, Journal of Power Sources, Vol. 88, pp. 269–273. (2000).
[13] X. Cheng et al., “Gel Polymer Electrolytes for Electrochemical Energy Storage”, Advanced Energy Materials, Vol. 8, pp. 1702184. (2018)
[14] V. Aravindan et al., “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell”, Applied Physics A, Vol. 97, pp. 811-819. (2009)
[15] M.Y. Zhang et al., “A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery”, Electrochimica Acta, Vol. 245, pp. 752-759. (2017).
[16] F. Liu et al., “Progress in the production and modification of PVDF membranes”, Journal of Membrane Science, Vol. 375, pp. 1-27. (2011)
[17] B. Li et al., “Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries”, ACS Applied Materials & Interfaces, Vol. 11, no. 45, pp. 42206-42213. (2019)
[18] W. Wang et al., “Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles”, The Journal of Physical Chemistry C, Vol. 121, pp. 2563-2573. (2017)
[19] W. Liu et al., “Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers”, Nano Letters, Vol. 15, no. 4, pp. 2740-2745. (2015).
[20] H. Yang et al., “Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries”, Journal of Materials Chemistry A, Vol. 8, pp. 7261-7272. (2020)
[21] S. Bag et al., “LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries”, Energy Storage Materials, Vol. 24, pp. 198-207. (2020)
[22] J. Yu et al., “A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature”, ChemElectroChem, Vol. 5, pp. 2873-2881. (2018)
[23] M. Marcinek et al., “Electrolytes for Li-ion transport – Review”, Solid State Ionics, Vol. 276, pp. 107-126. (2015)
[24] K. Kim et al., “Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries”, Electrochimica Acta, Vol. 225, pp. 358-368. (2017)
[25] M. Dahbi et al., “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, Vol. 196, pp. 9743-9750. (2011)
[26] P. Derollez, J. Lefebvre, M. Descamps, W. Press, H. Fontaine, “Structure of succinonitrile in its plastic phase,” Journal of Physics: Condensed Matter, Vol. 2, no. 33, pp. 6893-6903, (1990).
[27] P.J. Alarco et al., “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors”, Nature Materials, Vol. 3, pp. 476-81. (2004)
[28] Q. Zhang et al., “Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries”, ACS Applied Materials & Interfaces, Vol. 9, pp. 29820-29828. (2017)
[29] M.B. Effat et al., “Towards succinonitrile-based lithium metal batteries with long cycle life: The influence of fluoroethylene carbonate loading and the separator”, Journal of Power Sources, Vol. 436, pp. 226802. (2019).
[30] P. Guan, L. Liu, and X. Lin, “Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion”, Journal of The Electrochemical Society, Vol. 162, no. 9, pp. A1798-A1808. (2015).
[31] E. Quartaroneand and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives”, Chemical Society Reviews, Vol. 40, pp. 2525-40. (2011)
[32] J. Tan et al., “A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase”, Advanced Energy Materials, Vol. 11, no. 16. (2021)
[33] L. Chen et al., “Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries”, Journal of Power Sources, Vol. 174, no. 2, pp. 538-543. (2007)
[34] C. Yao et al., “Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes”, Applied Surface Science, Vol. 255, no. 6, pp. 3854-3858. (2009)
[35] Y. Lu et al., “A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries”, Chemical Science, Vol. 10, no. 15, pp. 4306-4312. (2019)
[36] V. Sharova et al., “Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries”, Journal of Power Sources, Vol. 375, pp. 43-52. (2018). |