博碩士論文 109329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.133.137.53
姓名 羅時廷(Shih-Ting Lo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
(PVDF-HFP based composite polymer electrolyte and Li electrode interface modification by succinonitrile-based ionic conductor in high stable Li-ion battery)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用Li0.33La0.557TiO3(LLTO)奈米線複合PVDF-HFP (Poly(vinylidene fluoride-co-hexafluoropropylene)製備陶瓷複合電解質,以此來降低聚合物基體的結晶度,提升Li離子遷移率。LLTO奈米線可以形成連續的通道,能提供鋰離子連續性的傳遞,離子導率提升至1.50 x 10-4S cm-1。為了改善PVDF-HFP與Li界面的副反應,本研究提出少量LITFSI/FEC/SN離子導體修飾界面,以此提升LiF在固態電解質介面層(SEI)的比例,透過提升LiF含量來完全抑制PVDF-HFP與Li的副反應。在長時間恆電流循環充放電過程,電壓維持穩定並且持續560小時後,沒有發現副反應的跡象,與傳統液態電解質修飾界面相比提升約41 %穩定性。在恆電流循環後,從SEM表面影像顯示當CPE有副反應時,在Li表面有大量鋰樹枝晶與死鋰生成,而CPE沒有副反應時,Li表面平整且均勻。透過XPS分析CPE與Li表面元素分析證明SNE修飾CPE與Li之界面可以完全抑制副反應。此外,LFP|SNE|CPE|SNE|Li全電池在0.2 C下循環100圈後,比電容量仍保持在134 mAh g-1,庫侖效率為仍保持在98.5%,幾乎沒有容量損失(5 th:135.4 mAh g-1 和 100 th:134 mAh g-1)。這項研究顯示離子導體和兼容的界面,對 ASSLMB(All-solid-state lithium-metal battery)至關重要,特別是對於界面處的穩定性。
摘要(英) In this study, Li0.33La0.557TiO3(LLTO) nanowires were used as ceramic fillers in PVDF-HFP-based electrolytes to reduce the crystallinity of the polymer matrix. The LLTO nanofibers also provide continuous channels that facilitate Li+ transport. The ionic conductivity were increased to 1.50*10-4 S-cm-1, about 10 times higher than that of the pure PVDF-HFP electrolyte without LLTO. We further proposed a composite polymer electrolyte using plastic superionic conductor succinonitrile-based electrolyte (LITFSI/FEC/SN, SNE), where little amounts of succinonitrile-based conductor were applied at the interface between Li electrode and PVDF-HFP-based composite polymer electrolyte. The addition of FEC to SNE increased the ratio of lithium fluoride (LiF) in the solid electrolyte interface (SEI) and inhibited the side reaction of PVDF-HFP. In the long-term galvanostatic cycle charge-discharge testing, the voltage remained stable for 560 hours and the stability improved about 41% compared to LE-modified CPE. The XPS analysis indicated that the side reactions were completed inhibited after SNE modification of CPE. Moreover, the LFP|SNE|CPE|SNE|Li cell has a discharge specific capacity of 134 mAh g−1 at 0.2 C after 100 cycles and a Coulombic efficiency of 98.5% without virtually capacity loss (135.4 mAh g−1 after 5 cycles and 134 mAh g−1 after 100 cycles). This work demonstrated that the super-conductive electrolyte and compatible interface are both crucial for improving ionic conductivity and SEI stability in a high performance ASSLMB.
關鍵字(中) ★ 鋰離子電池
★ 聚偏氟乙烯-六氟丙烯
★ 丁二腈
★ 複合聚合物電解質
★ 氟代碳酸乙烯酯
★ 氟化鋰
關鍵字(英) ★ Lithium-ion battery
★ Poly(vinylidene fluoride-co-hexafluoropropylene)
★ Succinonitrile
★ Composite polymer electrolyte
★ Fluoroethylene carbonate
★ Lithium fluoride
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章、前言 1
第二章、文獻回顧 2
2.1. 固態聚合物電解質 2
2.1.1. 聚環氧乙烷(PEO) 2
2.1.2. 聚偏氟乙烯(PVDF) 3
2.2. PVDF基電解質發展 3
2.2.1. 凝膠聚合物電解質(GPE) 3
2.2.2. 全固態聚合物電解質(SPE) 4
2.3. PVDF-HFP基固態複合電解質之結構設計 5
2.3.1. PVDF-HFP基固態複合電解質 5
2.3.2. 陶瓷填料之LLTO奈米線 6
2.4. PVDF基複合聚合物電解質之界面優化 7
2.4.1. 少量液態電解液降低界面阻抗 8
2.4.2. 添加LiF抑制副反應 8
2.4.3. 界面修飾之傳統型液態電解質 9
2.4.4. 界面修飾之丁二腈基電解質 11
2.4.5. 研究動機 12
第三章、實驗方法 14
3.1. 實驗藥品 14
3.2. 實驗方法 15
3.2.1 LLTO之靜電紡絲與煅燒製程 15
3.2.2. LLTO之粉末合成與煅燒製程 15
3.2.3. 製備PVDF-HFP基複合聚合物電解質 16
3.2.4. 丁二腈基電解質 17
3.2.5. 傳統型液態電解質 17
3.3. 材料分析與鑑定 17
3.3.1. X光繞射儀 (X-ray diffraction, XRD) 17
3.3.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 17
3.3.3. 穿透電子顯微鏡(Transmission Electron Microscopy, TEM) 18
3.3.4. X射線光電子能譜(X-ray photoelectron spectroscopy,XPS) 18
3.4. 電化學分析與電池組裝 19
3.4.1. 電化學阻抗譜 (EIS) 19
3.4.2. 恆電流充放電(Chronopotentiometry) 19
3.4.3. 鈕扣電池組裝 20
第四章、結果與討論 21
4.1. LLTO奈米線之材料特性分析 21
4.1.1. 初紡及煅燒後之LLTO陶瓷奈米線分析 21
4.1.2. TEM表面形貌分析 22
4.2. PVDF-HFP複合固態電解質之材料特性分析 23
4.2.1. SEM形貌分析 23
4.2.2. 交流阻抗分析 24
4.3. 界面修飾對複合聚合物電解質之影響 26
4.3.1. 交流阻抗分析 26
4.3.2. 恆電流充放電分析 27
4.3.3. 恆電流充放電後之交流阻抗分析 30
4.3.4. SEM表面形貌分析 31
4.3.5. XPS表面元素分析 33
4.4. PVDF-HFP基複合聚合物電解質之全電池電性 39
4.4.1. 循環伏安法 39
4.4.2. 複合聚合物電解質全電池之倍率性能 40
4.4.3. 複合聚合物電解質全電池之長時間循環性能 41
第五章、結論 43
參考文獻 44
參考文獻 [1] G. J Offer et al., “Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system”, Energy Policy, Vol. 38, no. 1, pp. 24-29. (2010)
[2] Y. Miao et al., “Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements”, Energies, Vol. 12, pp. 1074. (2019).
[3] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, “Materials for lithium-ion battery safety”, Science advances, Vol. 4, pp. eaas9820 (2018).
[4] X.B. Cheng et al., “Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes”, Chem, Vol. 5, no. 1, pp. 74-96. (2019)
[5] X. Wu et al., “Safety Issues in Lithium Ion Batteries: Materials and Cell Design”, Frontiers in Energy Research, Vol. 7. (2019)
[6] L. Yue et al., “All solid-state polymer electrolytes for high-performance lithium ion batteries”, Energy Storage Materials, Vol. 5, pp. 139-164. (2016)
[7] P.V. Wright et al., “Electrical Conductivity in Ionic Complexes of Poly(ethy1ene oxide) ”, Polymer International, Vol. 7, pp. 319-327. (1975)
[8] M.Z. A. Munshi, B. B. Owens, “Ionic Transport in Poly(ethylene oxide) (PEO)-LiX Polymeric Solid Electrolyte”, Polymer Journal, Vol. 20, no. 7, pp. 577-586. (1988)
[9] L. Li, Y. Deng, and G. Chen, “Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries”, Journal of Energy Chemistry, Vol. 50, pp. 154-177. (2020).
[10] Y. Wu et al., “Advances and prospects of PVDF based polymer electrolytes”, Journal of Energy Chemistry, Vol 64, pp. 62-84. (2022)
[11] Y. Zhang et al., “Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation”, RSC Advances, Vol. 7, pp. 56183-56193. (2017)
[12] P. Periasamy et al., “Studies on PVdF-based gel polymer electrolytes”, Journal of Power Sources, Vol. 88, pp. 269–273. (2000).
[13] X. Cheng et al., “Gel Polymer Electrolytes for Electrochemical Energy Storage”, Advanced Energy Materials, Vol. 8, pp. 1702184. (2018)
[14] V. Aravindan et al., “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell”, Applied Physics A, Vol. 97, pp. 811-819. (2009)
[15] M.Y. Zhang et al., “A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery”, Electrochimica Acta, Vol. 245, pp. 752-759. (2017).
[16] F. Liu et al., “Progress in the production and modification of PVDF membranes”, Journal of Membrane Science, Vol. 375, pp. 1-27. (2011)
[17] B. Li et al., “Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries”, ACS Applied Materials & Interfaces, Vol. 11, no. 45, pp. 42206-42213. (2019)
[18] W. Wang et al., “Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles”, The Journal of Physical Chemistry C, Vol. 121, pp. 2563-2573. (2017)
[19] W. Liu et al., “Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers”, Nano Letters, Vol. 15, no. 4, pp. 2740-2745. (2015).
[20] H. Yang et al., “Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries”, Journal of Materials Chemistry A, Vol. 8, pp. 7261-7272. (2020)
[21] S. Bag et al., “LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries”, Energy Storage Materials, Vol. 24, pp. 198-207. (2020)
[22] J. Yu et al., “A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature”, ChemElectroChem, Vol. 5, pp. 2873-2881. (2018)
[23] M. Marcinek et al., “Electrolytes for Li-ion transport – Review”, Solid State Ionics, Vol. 276, pp. 107-126. (2015)
[24] K. Kim et al., “Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries”, Electrochimica Acta, Vol. 225, pp. 358-368. (2017)
[25] M. Dahbi et al., “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, Vol. 196, pp. 9743-9750. (2011)
[26] P. Derollez, J. Lefebvre, M. Descamps, W. Press, H. Fontaine, “Structure of succinonitrile in its plastic phase,” Journal of Physics: Condensed Matter, Vol. 2, no. 33, pp. 6893-6903, (1990).
[27] P.J. Alarco et al., “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors”, Nature Materials, Vol. 3, pp. 476-81. (2004)
[28] Q. Zhang et al., “Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries”, ACS Applied Materials & Interfaces, Vol. 9, pp. 29820-29828. (2017)
[29] M.B. Effat et al., “Towards succinonitrile-based lithium metal batteries with long cycle life: The influence of fluoroethylene carbonate loading and the separator”, Journal of Power Sources, Vol. 436, pp. 226802. (2019).
[30] P. Guan, L. Liu, and X. Lin, “Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion”, Journal of The Electrochemical Society, Vol. 162, no. 9, pp. A1798-A1808. (2015).
[31] E. Quartaroneand and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives”, Chemical Society Reviews, Vol. 40, pp. 2525-40. (2011)
[32] J. Tan et al., “A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase”, Advanced Energy Materials, Vol. 11, no. 16. (2021)
[33] L. Chen et al., “Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries”, Journal of Power Sources, Vol. 174, no. 2, pp. 538-543. (2007)
[34] C. Yao et al., “Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes”, Applied Surface Science, Vol. 255, no. 6, pp. 3854-3858. (2009)
[35] Y. Lu et al., “A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries”, Chemical Science, Vol. 10, no. 15, pp. 4306-4312. (2019)
[36] V. Sharova et al., “Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries”, Journal of Power Sources, Vol. 375, pp. 43-52. (2018).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明