博碩士論文 109329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.139.238.176
姓名 林竑愷(Alexander HongKai Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 氮電漿處理對單層二硫化鉬的影響
(Effect of N2 plasma treatments on monolayer MoS2)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 由於導帶附近的強費米能階釘紮效應(Fermi level pinning),二硫化鉬(MoS2)顯示出 n型導電特性。缺乏有效的 p型摻雜阻礙了基於 p-n接面的元件應用,例如光電二極管、發光元件。過去已經提出了幾種方法來實現二硫化鉬(MoS2)中的摻雜,例如化學氣相沉積(CVD)替代摻雜、通過分子化學吸附/物理吸附或沉積薄膜的電荷轉移(charge transfer)摻雜和利用電漿的原子替代摻雜。在這些方法中,利用電漿的原子替代摻雜具有區域選擇性的優點。氮電漿的原子替代摻雜可以對二硫化鉬(MoS2)造成氮摻雜,並作為 p 型摻雜劑,但是對於單層二硫化鉬(MoS2)的氮電漿處理的相關研究進展甚微。
本篇論文利用電感耦合電漿(inductively coupled plasma)系統來進行氮電漿處理,探討不同製程參數對單層二硫化鉬(MoS2)薄膜的影響,其參數包含功率、時間、治具溫度、工作壓力及電漿源到樣品表面的距離。通過使用拉曼光譜(Raman spectroscopy)評估原始和氮摻雜的單層MoS2薄膜。在最佳條件下,A1g峰藍移約1.87 cm-1,I(E12g)/ I(A1g)的比值相對於原始的MoS2降低了約48%。與X射線光電子能譜(X-ray photoelectron spectroscopy)結果符合,紫外光電子能譜(ultraviolet photoelectron spectroscopy)研究表明,共價氮摻雜後,價帶最大值(VBM)向費米能量(Fermi energy)附近移動。
摘要(英) MoS2 show n-type conduction characteristics due to strong Fermi level pinning near the conduction band. The lack of effective p-type doping hinders the device applications based on p–n junction such as photodiodes and light-emitting devices. Several approaches have been proposed to achieve doping in MoS2, such as substitutional chemical vapor deposition (CVD) doping, charge transfer doping via molecular chemisorption/physisorption and plasma doping. Among all these methods, plasma doping has the advantage of area-selectivity. Substitutional doping of nitrogen plasma can cause nitrogen doping of molybdenum disulfide (MoS2) and act as a p-type dopant. However, little progress has been made in nitrogen plasma treatment of monolayer molybdenum disulfide (MoS2).
In this study, inductively coupled plasma system was used to investigate the effect of N2 plasma treatments on monolayer MoS2. The effects of different N2 plasma treatment parameters on monolayer MoS2 were studied to optimize the covalent nitrogen doping conditions. The parameters included power, time, sample temperature, working pressure and the distance from the plasma source to the sample surface. The pristine and nitrogen-doped monolayer MoS2 films are evaluated by using Raman spectroscopy. Under optimal condition, the A1g peak blue shifted by about 1.87 cm-1, the E12g peak intensity to A1g peak intensity ratio decreased by about 48% with respect to the pristine MoS2. In accordance with the X-ray photoelectron spectroscopy results, the ultraviolet photoelectron spectroscopy investigation shows that the valence band maximum shifts closer to the Fermi energy after covalent nitrogen doping.
關鍵字(中) ★ 二硫化鉬
★ 氮電漿處理
關鍵字(英) ★ MoS2
★ N2 plasma treatments
論文目次 目錄
摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1研究背景 1
1-2研究動機 1
第二章 基礎理論及文獻回顧 3
2-1過渡金屬二硫族化物介紹 3
2-1-1過渡金屬二硫族化物之晶型結構與電子結構 3
2-1-2過渡金屬二硫族化物合成發展概況 6
2-1-3過渡金屬二硫族化物電晶體發展 9
2-2二硫化鉬(MoS2)摻雜方法回顧 12
2-2-1 In-Situ化學氣相沉積(CVD)替代摻雜 12
2-2-2電漿摻雜 13
2-2-3電荷轉移摻雜 18
第三章 研究方法 23
3-1實驗架構 23
3-2實驗材料與設備 24
3-3實驗步驟 24
第四章 結果與討論 26
4-1 MoS2之氮摻雜製程參數探討 26
4-1-1不同功率下之氮電漿處理 26
4-1-2樣品與RF電漿源之間的距離不同之氮電漿處理 29
4-1-3不同治具溫度之氮電漿處理 31
4-1-4不同工作壓力之氮電漿處理 34
4-2單層MoS2的氮摻雜效應 37
4-2-1 X射線光電子能譜(XPS)和紫外光電子能譜(UPS)分析 37
4-2-2 理論能隙值計算與能帶圖 42
第五章 結論 45
參考文獻 46
參考文獻 [1] M. Lundstrom, Science, 299, 210–211, (2003).
[2] D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens, L.-J. Li, H.-S.P.
Wong, and F.H. Koppens, Nature, 573, 507–518, (2019).
[3] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X.
Duan, Nature, 557, 696–700, (2018).
[4] W. Liu, D. Sarkar, J. Kang, W. Cao, and K. Banerjee, ACS Nano, 9 7904–12, (2015)
[5] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A.
Pan, Y. Huang, R. Yu, and X. Duan, Nano Lett., 16, 264–9, (2016).
[6] M. Li, J. Yao, X. Wu, S. Zhang, B. Xing, X. Niu, X. Yan, Y. Yu, Y. Liu, and Y. Wang, ACS
Appl. Mater. Interfaces, 12, 6276−6282, (2020).
[7] J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H.J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R.
Sinclair, J. Chang, S. Tongay, and J. Wu, Nano Lett., 14, 6976-6982, (2014).
[8] K. Zhang, B.M. Bersch, J. Joshi, R. Addou, C.R. Cormier, C. Zhang, K. Xu, N.C. Briggs,
K. Wang, S. Subramanian, K. Cho, S. Fullerton‐Shirey, R.M. Wallace, P.M. Vora, and J. A.
Robinson, Adv. Funct. Mater., 28, 1706950, (2018).
[9] H. Gao, J. Suh, M.C. Cao, A.Y. Joe, F. Mujid, K.-H. Lee, S. Xie, P. Poddar, J.-U. Lee, K.
Kang, P. Kim, D.A. Muller, and J. Park, Nano Lett., 20, 4095–4101, (2020)
[10] H. Yoo, S. Hong, H. Moon, S. On, H. Ahn, H.-K. Lee, S. Kim, Y.K. Hong, and J.-J. Kim,
Adv. Electron. Mater., 4, 1700639, (2018).
[11] X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W.J. Yoo, Adv. Mater., 28, 2345,
(2016).
[12] A. Tarasov, S. Zhang, M.-Y. Tsai, P.M. Campbell, S. Graham, S. Barlow, S.R. Marder, and E.M. Vogel, Adv. Mater., 27, 1175–1181, (2015).
[13] D.M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, and Y.S. Jung, ACS Nano, 9,
12115–12123, (2015).
[14] S.-W. Min, M. Yoon, S.J. Yang, K.R. Ko, and S. Im, ACS Appl. Mater. Interfaces, 10,
4206-4212, (2018).
[15] D.-H. Kang, S.R. Dugasani, H.-Y. Park, J. Shim, B. Gnapareddy, J. Jeon, S. Lee, Y. Roh,
S.H. Park, and J.-H. Park, Sci. Rep., 6, 20333, (2016).
[16] Y. Du, H. Liu, A.T. Neal, M. Si, and P.D. Ye, IEEE Electron. Device Lett., 34, 1328–1330, (2013).
[17] C.J. Lockhart de la Rosa, R. Phillipson, J. Teyssandier, J. Adisoejoso, Y. Balaji, C.
Huyghebaert1, I. Radu1, M. Heyns, S. De Feyter, and S. De Gendt, Appl. Phys. Lett., 109,
253112, (2016).
[18] S. Bertolazzi, M. Gobbi, Y. Zhao, C. Backes, and P. Samorì, Chem. Soc. Rev., 47, 6845–6888, (2018).
[19] K. Xu, Y. Wang, Y. Zhao, and Y. Chai, J. Mater. Chem.C, 5, 376–381, (2017).
[20] Y. Cai, H. Zhou, G. Zhang, and Y.-W. Zhang, Chem. Mater., 28, 8611–8621, (2016).
[21] Y. Cho, J.H. Park, M. Kim, Y. Jeong, S. Yu, J.Y. Lim, Y. Yi, and S. Im, Nano Lett., 19, 2456–2463, (2019).
[22] J.Y. Lim, A. Pezeshki, S. Oh, J.S. Kim, Y.T. Lee, S. Yu, D.K. Hwang, G.H. Lee, H.J. Choi, and S. Im, Adv. Mater., 29, 1701798, (2017).
[23] H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, and A. Javey, Nano Lett., 13, 1991–1995, (2013).
[24] C.J. Benjamin, S. Zhang, and Z. Chen, Nanoscale, 10, 5148–5153, (2018).
[25] S. Mouri, Y. Miyauchi, and K. Matsuda, Nano Lett., 13, 5944–5948, (2013).
[26] D.-H. Kang, J. Shim, S.K. Jang, J. Jeon, M.H. Jeon, G.Y. Yeom, W.-S. Jung, Y.H. Jang, S. Lee, and J.-H. Park, ACS Nano, 9, 1099–1107, (2015).

[27] S. Hong, K.L. Kim, Y. Cho, H. Cho, J.H. Park, C. Park, and S. Im, Adv. Electron. Mater., 6, 2000479, (2020).
[28] S.-W. Min, M. Yoon, S.J. Yang, K.R. Ko, and S. Im, ACS Appl. Mater. Interfaces, 10, 4206–4212, (2018).
[29] Y. Kang, and S. Han, Nanoscale, 9, 4265–4271, (2017).
[30] S. Fan, X. Tang, D. Zhang, X. Hu, J. Liu, L. Yang, and J. Su, Nanoscale, 11, 15359–15366, (2019).
[31] S.H. Jo, D.H. Kang, J. Shim, J. Jeon, M.H. Jeon, G. Yoo, J. Kim, J. Lee, G.Y. Yeom, and S. Lee, Adv. Mater., 28, 4824–4831, (2016).
[32] S. Hong, G. Yoo, D.H. Kim, W.G. Song, O.K. Le, Y.K. Hong, K. Takahashi, I. Omkaram, D.N. Son, and S. Kim, Phys. Status Solidi C, 14, 1600262, (2017).
[33] S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, and S. Lei, Nano Lett., 14, 1354–1361, (2014).
[34] K. Heo, S.-H. Jo, J. Shim, D.-H. Kang, J.-H. Kim, and J.-H. Park, ACS Appl. Mater. Interfaces, 10, 32765–32772, (2018).
[35] Y. Jing, Q. Tang, P. He, Z. Zhou, and P. Shen, Nanotechnology, 26, 095201, (2015).
[36] S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh, E. Hwang, D.H. Yoon, and S. Kim, ACS Nano, 14, 9796–9806, (2020).
[37] M.H. Ali, D.-H. Kang, and J.-H. Park, Org. Electron., 53, 14–19, (2018).
[38] S. Hong, H. Im, Y.K. Hong, N. Liu, S. Kim, and J.H. Park, Adv. Electron. Mater., 4, 1800308, (2018).
[39] S.N. Zhang, C.J. Benjamin, and Z. Chen, 2017 75th Annual Device Research Conference (DRC), 2017, pp. 1-2
[40] D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, and A. Javey, J. Am. Chem. Soc., 136, 7853–7856, (2014).

[41] A. Rai, A. Valsaraj, H.C.P. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, L.F. Register, E. Tutuc, and S.K. Banerjee, Nano Lett., 15, 4329–4336, (2015).
[42] A. Rai, A. Valsaraj, H.C.P. Movva, A. Roy, E. Tutuc, L.F. Register and S.K. Banerjee, 2015 73rd Annual Device Research Conference (DRC), 2015, pp. 189-190
[43] A. Valsaraj, J. Chang, A. Rai, L.F. Register, and S.K. Banerjee, 2D Mater., 2, 045009, (2015).
[44] A. Alharbi, and D. Shahrjerdi, "Contact engineering of monolayer CVD MOS2 transistors," 2017 75th Annual Device Research Conference (DRC), 2017, pp. 1-2.
[45] C.J. McClellan, E. Yalon, K.K.H. Smithe, S.V. Suryavanshi, and E. Pop, "Effective n-type doping of monolayer MoS2 by AlOx," 2017 75th Annual Device Research Conference (DRC), 2017, pp. 1-2
[46] C.J.L. De la Rosa, A. Nourbakhsh, M. Heyne, I. Asselberghs, C. Huyghebaert, I. Radu, M. Heyns, and S.D. Gendt, Nanoscale, 9, 258–265, (2016).
[47] M.S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, and W.J. Yoo, ACS Nano, 8, 9332–9340, (2014).
[48] K.H. Kim, K.S. Kim, Y.J. Ji, I. Moon, K. Heo, D.-H. Kang, K.N. Kim, W.J. Yoo, J.-H. Park, and G.Y. Yeom, J. Mater. Chem. C, 8, 1846–1851, (2020).
[49] T. Hamada, S. Tomiya, T. Tatsumi, M. Hamada, T. Horiguchi, K. Kakushima, K. Tsutsui, and H. Wakabayashi, IEEE Journal of the Electron Devices Society, 9, 278-285, (2021).
[50] A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, J. Kim, K. Cho, R. Addou, C.L. Hinkle, J. Appenzeller, and R.M. Wallace, Nano Lett., 16, 5437-5443, (2016).
[51] P. Mishra, M. Tangi, T.K. Ng, M.N. Hedhili, D.H. Anjum, M.S. Alias, C.-C. Tseng, L.-J. Li, and B.S. Ooi, Applied Physics Letters, 110, 012101, (2017).

[52] A.D. Nguyen, T.K. Nguyen, C.T. Le, S. Kim, F. Ullah, Y. Lee, S. Lee, K. Kim, D. Lee, S. Park, J.-S. Bae, J.I. Jang, and Y.S. Kim, ACS Omega, 4, 21509-21515, (2019).
[53] Y. Zeng, X. Zeng, S. Wang, Y. Hu,W. Wang, S. Yin, T. Ren, Y. Zeng, J. Lu, Z. Guo, Y. Xiao, and W. Jin, Nanotechnology, 31, 015702, (2020).
[54] J. Lu, Z. Guo, W. Wang, J. Lu, Y. Hu, J. Wang, Y. Xiao, X. Wang, S. Wang, Y. Zhou, and X. Zeng, Nanotechnology, 32, 015701, (2020).
[55] F. Giannazzo, G. Fisichella, G. Greco, S.D. Franco, I. Deretzis, A.L. Magna, C. Bongiorno, G. Nicotra, C. Spinella, M. Scopelliti, B. Pignataro, S. Agnello, and F. Roccaforte, ACS Appl. Mater. Interfaces, 9, 23164-23174, (2017).
[56] S. Wu, Y. Zeng, X. Zeng, S. Wang, Y. Hu, W. Wang, S. Yin, G. Zhou, W. Jin, T. Ren, Z. Guo, and J. Lu, 2D Materials, 6, 025007, (2019).
[57] Y. Zhang, J. Liu, Y. Pan, K. Luo, J. Yu, Y. Zhang, K. Jia, H. Yin, H. Zhu, H. Tian, and Z. Wu, Journal of Materials Science: Materials in Electronics, 30, 18185-18190, (2019).
[58] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, ACS Nano, 10, 2128–2137, (2016).
[59] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem., 5, 263, (2013).
[60] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol., 7, 699–712, (2012).
[61] X. Chen, L. Wang, H.-Y. Wang, X.-P. Wang, Y. Luo, and H.-B. Sun, J. Phys. D: Appl. Phys., 54, 354002, (2021).
[62] K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett., 105, 136805, (2010).
[63] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett., 10, 1271–1275, (2010).
[64] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Nature Commun., 3, 887, (2012).
[65] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nature Nanotech., 7, 490–493, (2012).
[66] K.F. Mak, K. He, J. Shan, and T.F. Heinz, Nature Nanotech., 7, 494–498, (2012).
[67] H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, and H. Zhang, Small, 8, 682–686, (2012).
[68] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett., 11, 5111–5116, (2011).
[69] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen, and M. Chhowalla, ACS Nano, 6, 7311–7317, (2012).
[70] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang,
ACS Nano, 6, 74–80, (2012).
[71] A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, and G.A. Steele, Nano Lett., 12, 3187–3192, (2012).
[72] Y.Z. Guo, and J. Robertson, Appl. Phys. Lett., 108, 233104, (2016).
[73] K.K. Kam and B.A. Parkinson, J. Phys. Chem., 86, 463–467, (1982).
[74] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl Acad. Sci., 102, 10451–10453, (2005).
[75] N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B, 80, 155425, (2009).
[76] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, ACS Nano, 4, 2695–2700, (2010).
[77] S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano, 5, 9703–9709, (2011).
[78] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotech., 6, 147–150, (2011).
[79] B. Radisavljevic, M.B. Whitwick, and A. Kis, ACS Nano, 5, 9934–9938 (2011).
[80] A. Ayari, E. Cobas, O. Ogundadegbe, and M.S. Fuhrer, J. Appl. Phys., 101, 014507 (2007).
[81] S. Aftab, and J. Eom, 2D Mater., 6, 035005, (2019).
[82] J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, and Y. Xie, Adv. Mater., 24, 1969–1974, (2012).
[83] Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett., 12, 1136–1140, (2012).
[84] R. Bissessur, J. Heising, and W. Hirpo, Chem. Mater., 8, 318–320, (1996).
[85] P. Joensen, R.F. Frindt, and S.R. Morrison, Mater. Res. Bull., 21, 457–461, (1986).
[86] M. Osada, and T. Sasaki, J. Mater. Chem., 19, 2503–2511, (2009).
[87] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed., 50, 11093–11097, (2011).
[88] M.B. Dines, Mater. Res. Bull., 10, 287–291, (1975).
[89] H-L. Tsai, J. Heising, J. L. Schindler, C. R. Kannewurf, and M.G. Kanatzidis, Chem. Mater., 9, 879–882, (1997).
[90] G.L. Frey, K.J. Reynolds, R.H. Friend, H. Cohen, and Y. Feldman, J. Am. Chem. Soc., 125, 5998–6007, (2003).
[91] R. Bissessur, M.G. Kanatzidis, J.L. Schindler, and C.R. Kannewurf, J. Chem. Soc. Chem. Commun., 1582–1585, (1993).
[92] R.A. Gordon, D. Yang, E.D. Crozier, D.T. Jiang, and R.F. Frindt, Phys. Rev. B, 65, 125407, (2002).
[93] S. Kirmayer, E. Aharon, E. Dovgolevsky, M. Kalina, and G.L. Frey, Phil. Trans. R. Soc. A, 365, 1489–1508 (2007).
[94] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, and H. Zhang, Angew. Chem. Int. Ed., 51, 9052–9056 (2012).
[95] Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou, Small, 8, 966–971, (2012).
[96] X. Wang, H. Feng, Y. Wu, and L. Jiao, J. Am. Chem. Soc., 135, 5304–5307, (2013).
[97] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li,
Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, Nano Lett., 12, 1538–1544, (2012).
[98] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W.
Wang, C.S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater., 24, 2320–2325, (2012).

[99] Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T.
Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, and J. Kong, Nano Lett., 2013,
13, 1852–1857, (2013).
[100] X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, Nano Lett.,
14, 464–472, (2014).
[101] H. R. Gutie´rrez, N. Perea-Lo´pez, A.L. Elı´as, A. Berkdemir, B. Wang, R. Lv, F. Lo´pez-Urı´as, V.H. Crespi, H. Terrones, and M. Terrones, Nano Lett., 13, 3447–3454, (2012).
[102] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X.
Song, H.Y. Hwang, Y. Cui, and Z. Liu, ACS Nano, 7, 8963–8971, (2013).
[103] D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, and Y. Cui, Nano Lett., 13,
1341–1347, (2013).
[104] X. Lu, M.I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z.
Dong, Z. Liu, W. Zhou, and Q. Xiong, Nano Lett., 14, 2419–2425, (2014).
[105] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y.
Iwasa, T. Takenobu, and L.-J. Li, ACS Nano, 8, 923–930, (2013).
[106] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan,
J. Feng, Q. Sun, and Z. Liu, Nano Lett., 13, 3870–3877, (2013).
[107] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep., 3, 1866, (2013)
[108] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and
L.-J. Li, Nanoscale, 4, 6637–6641, (2012).
[109] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M.
Ajayan, and J. Lou, Nat. Mater., 12, 754–759, (2013).
[110] A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T.F.
Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone, Nat. Mater., 12, 554–561, (2013).
[111] Y. Liu, J. Guo, Y. Wu, E. Zhu, N.O. Weiss, Q. He, H. Wu, H.C. Cheng, Y. Xu, I. Shakir,
Y. Huang, and X. Duan, Nano Lett., 16, 6337–6342, (2016).
[112] R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, and M. Chhowalla,
Nat. Mater., 13, 1128–1134, (2014).
[113] S. Das and J. Appenzeller, Appl. Phys. Lett., 103, 103501, (2013).
[114] H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan, D. Mandrus, D. Tomanek,
and Z. Zhou, Nano Lett., 16, 1896–1902, (2016).
[115] K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.J. Ha, S.R. Madhvapathy, S. Desai, A.
Sachid, and A. Javey, APL Mater., 2, 092504,(2014).
[116] A. Kerelsky, A. Nipane, D. Edelberg, D. Wang, X. Zhou, A. Motmaendadgar, H. Gao, S.
Xie, K. Kang, J. Park, J. Teherani, and A. Pasupathy, Nano Lett., 17, 5962–5968, (2017).
[117] D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, and S.J. Bending, ACS Nano, 8, 11154–
11164, (2014).
[118] R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S.D. Lei,
W.B. Chen, S. Najmaei, J. Lou, P.M. Ajayan, G. Gupta, A.D. Mohite, and M. Chhowalla,
APL Mater., 2, 092516, (2014).
[119] S.R. Das, J. Kwon, A. Prakash, C.J. Delker, S. Das, and D.B. Janes, Appl. Phys. Lett.,
106, 083507, (2015).
[120] N. Haratipour and S.J. Koester, 72nd Device Research Conference, 2014, pp. 171-172.
[121] H.M. Khalil, M.F. Khan, J. Eom and H. Noh, ACS Appl. Mater. Interfaces, 7, 23589–23596, (2015).
[122] T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y.
Miyamoto, Sci. Rep., 6, 22277, (2016).
[123] M.J. Mleczko, C. Zhang, H.R. Lee, H.-H. Kuo,B. Magyari-Köpe, R.G. Moore, Z.-X. Shen,
I. R. Fisher, Y. Nishi, and E. Pop, Sci. Adv., 3, e1700481, (2017).
[124] C.M. Corbet, C. McClellan, A. Rai, S.S. Sonde, E. Tutuc and S.K. Banerjee, ACS Nano,
9, 363–370, (2015).

[125] C. Hu, C. Yuan, A. Hong, M. Guo, T. Yu, and X. Luo, Applied Physics Letters, 113,
041602, (2018).
[126] W.M. Parkin, A. Balan, L. Liang, P.M. Das, M. Lamparski, C.H. Naylor, J.A. Rodríguez-Manzo, A.T.C. Johnson, V. Meunier, and M. Drndic, ACS Nano, 10, 4134-4142, (2016).
[127] A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D.
Akinwande, J.-F. Lin, Nat. Commun., 5, 1–9, (2014).
[128] N.A. Lanzillo, A.J. Simbeck, S.K. Nayak, Journal of Physics Condensed Matter, 27,
175501, (2015).
指導教授 陳一塵(I-Chen Chen) 審核日期 2022-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明