博碩士論文 109329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.188.61.223
姓名 楊佳桂(Jia-Guei Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
(LSCF Nanofiber/Ag Particle Composite Cathode for Proton-conducting Ceramic Electrochemical Cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質子傳導型陶瓷燃料電池(PCFC)在500-800℃範圍內運行會提高材料的耐久性,但同時也會降低空氣電極的氧還原反應(ORR)速率。陰極材料需具備高電子/離子之混合傳導性、較高的氧還原催化活性。此外,氣體容易擴散,可減少固體氧化物燃料電池(SOFC)中的極化損失。本研究中,我們通過靜電紡絲技術製備了La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)奈米纖維,並添加銀漿配製成用於質子傳導型陶瓷燃料電池(PCFC)的複合陰極。銀具有良好的催化活性、高導電性,且為一種廉價的材料,但因銀顆粒在高溫下容易團聚,降低了陰極孔隙率,導致PCFC性能變差。
本研究希望通過LSCF奈米纖維與銀形成複合陰極,LSCF奈米纖維來抑制銀顆粒在高溫下團聚情形,使電池性能提升。通過分析電池性能(I-V曲線)和電化學阻抗譜(EIS),我們可了解氣體、氧離子和電子在陰極傳輸的反應機制。其次,通過在復合陰極和電解質之間的界面中加入中間層可以改善電解質/陰極界面性能。可有效增加三相共存區(Triple phase boundary, TPB)點的密度。
實驗結果表明,50wt%Ag-50wt%LSCF奈米纖維複合陰極性能最好,在800℃時的最大功率密度為445.37 mW/cm2,較低的歐姆阻抗和極化阻抗分別為1.737 Ω∙cm2和0.068 Ω∙cm2。通過24小時長期穩定性測試,衰減率僅為8%。故本研究結果可知,LSCF奈米纖維有效阻擋銀顆粒聚集,使陰極保持良好孔隙率,降低極化阻抗,同時銀顆粒具有良好催化活性對氧還原反應,提升氧還原反應速度。50wt%Ag-50wt%LSCF奈米纖維複合陰極提供質子傳導型陶瓷燃料電池裝置未來發展之潛力。
摘要(英) Operation of protonic ceramic fuel cell (PCFC) in the 500-800℃ range would enhance the durability of materials but also reduce the oxygen reduction reaction (ORR) rate at air electrode. The cathode material has high electronic/ionic mixed conductivity and has much greater electrocatalytic properties. Moreover, gas can easily diffuse to reduce the polarization loss in the solid oxide fuel cell (SOFC).
In this study, we fabricate La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofibers by electrospinning technique and then add silver slurry to form a complex material for protonic ceramic fuel cell (PCFC). Silver has a good catalytic activity, high electrical conductivity and is an inexpensive material, but silver particles can agglomerate easily at high temperature, which reduce the cathode porosity and result in poor PCFC performance. Therefore, we expect to improve the agglomeration of silver particles at high temperature by blending silver and LSCF nanofibers to form composite cathode. By analyzing cell performance (I-V curve) and electrochemical impedance spectroscopy (EIS), we can understand the reaction mechanism of gas, oxygen ions and electrons transport in the cathode. Secondly, by incorporating an interlayer into the interface between composite cathode and electrolyte can improves the electrolyte/cathode interfacial properties. It can effectively increase the density of triple phase points.
The experimental results show that the 50wt%Ag–50wt%LSCF Fiber composite cathode has the best performance and shows the highest maximum power density of 445.37 mW/cm2 at 800℃, and the lower ohmic impedance and polarization impedance are 1.7370 Ω cm2 and 0.0683 Ω cm2, respectively. Besides, it only has a decay rate of 8% after 24 hours long-term stability test. From the results of this study, the LSCF nanofibers can effectively block the aggregation of silver particles, keep the cathode with good porosity, and reduce the polarization impedance. The 50wt%Ag-50wt%LSCF nanofiber composite cathode offers the potential for the future development of protonic ceramic fuel cell devices.
關鍵字(中) ★ 銀
★ LSCF
★ 奈米纖維
★ 氧表面交換係數
★ 複合陰極
★ 穩定性
關鍵字(英) ★ Ag
★ nanofiber
★ oxygen
★ surface exchange coefficient
★ complex cathode
★ stability
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XIII
前言 1
第一章、實驗原理與文獻回顧 3
1.1燃料電池之簡介 3
1.2固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 3
1.2.1 SOFC之原理 3
1.2.2 質子傳輸型陶瓷燃料電池結構 6
1.3 SOFC粉末製備與燒結機制 9
1.3.1. 固態反應法(Solid-state reaction) 9
1.3.2溶膠-凝膠法(Sol-gel methode) 10
1.3.3水熱法(Hydrothermal method) 10
1.3.4.燃燒法(Combustion) 11
1.3.4. 靜電紡絲法(Electrospinning method) 11
1.3.5粉末燒結理論 11
1.4奈米纖維之概況 13
1.4.1製作奈米纖維的方式 13
1.4.2靜電紡絲法簡介 14
1.4.3靜電紡絲原理 14
1.4.4靜電紡絲影響參數 16
1.4.5奈米纖維應用於燃料電池之優勢與發展困境 17
1.6 SOFC電池製備方法 18
1.6.1乾壓成型技術(Dry pressing technique) 18
1.6.2刮刀成型技術(Tape casting technique) 18
1.6.3旋轉塗佈技術(Spin coating technique) 19
1.7 SOFC陰極材料與傳輸機制 20
1.7.1陰極材料種類 20
1.7.2鈣鈦礦(Perovskite)結構與性質 20
1.7.3 鈣鈦礦結構之穩定性 20
1.7.4 陰極傳導機制 21
1.7.5 MIEC傳輸機制 23
1.8電化學分析原理 24
1.8.1極化曲線(I-V curve)之原理 24
1.8.2. 電化學交流阻抗頻譜之原理 28
1.8.3. 等效電路之簡介 29
第二章、實驗方法 33
2.1. 實驗藥品 33
2.2. 實驗方法與流程 34
2.2.1.  BaCe0.6Zr0.2Y0.2O3-δ粉末製備 34
2.2.2. 刮刀成型技術製備陽極基板 35
2.2.3. LSCF奈米纖維(Nanofiber)製備 35
2.2.4. 單電池製備 36
2.3. 材料性質分析 38
2.3.1. X光粉末繞射儀 38
2.3.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 39
2.3.3. X射線能量散佈分析儀(Energy Dispersive X-ray Spectrometer) 40
2.3.4. 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 40
2.4. 單電池I-V 性能量測 40
2.5. 電化學交流阻抗分析 41
第三章、結果與討論 42
3.1. 材料相分析 42
3.1.1. 煆燒電解質粉末之相分析 42
3.1.2. 單電池中材料與LSCF奈米纖維之相分析 43
3.2. 微結構分析 44
3.2.1. Ag-LSCF複合陰極之橫截面結構分析 44
3.3. 單電池I-V 性能曲線測量與分析 49
3.4. 單電池之EIS測量與分析 51
3.5. 全電池之bode圖分析 55
3.6 全電池之氧表面交換係數(Kq) 56
3.7. 單電池之長時間性能穩定性分析 57
第四章、結論 60
參考文獻 61
參考文獻 [1] Daisy Chuang:日本朝氫能社會目標邁進,10 MW世界最大再生能源製氫廠完工。2020年03月11日,取自https://technews.tw/2020 /03/11/jp-solar-powered-hydrogen-10mw/。
[2] 洪明豪,「鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質」,國立台灣科技大學,碩士論文,民國95年。
[3] I.R.D. Larramendi, N. Ortiz-Vitoriano, I. B. Dzul-Bautista, T. Rojo, “Designing Perovskite Oxides for Solid Oxide Fuel Cells”, IntechOpen, Rijeka, 2016.
[4] Q.Y. Lin, J. Lin, T. Liu, C.R. Xia, C.S. Chen, “Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst- decorated surfaces”, Solid State Ionics, Vol. 323, pp. 130-135, 2018.
[5] L. dos Santos-Gómez, E.R. Losilla, F. Martín, J.R. Ramos-Barrado, D. Marrero-López, “Novel Microstructural Strategies to Enhance the Electrochemical Performance of La0.8Sr0.2MnO3−δ Cathodes”, ACS Applied Materials & Interfaces, Vol. 7, pp. 7197-7205, 2015.
[6] L.F. Nie, J.C. Liu, Y.J. Zhang, M.L. Liu, “Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells”, Journal of Power Sources, Vol. 196, pp. 9975-9979, 2011.
[7] H.D. Tang, Z.Z. Jin, Y.S. Wu, W. Liu, L. Bi, “Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 100, pp. 108-112, 2019.
[8] Y. Chen, Y.F. Bu, B.T. Zhao, Y.X. Zhang, D. Ding, R.Z. Hu, T. Wei, B. Rainwater, Y. Ding, F.L. Chen, C.H. Yang, J. Liu, M.L. Liu, “A durable, high-performance hollow-nanofiber cathode for intermediate- temperature fuel cells”, Nano Energy, Volume 26, pp. 90-99, 2016.
[9] S. Shahgaldi, Z. Yaakob, D.J. Khadem, M. Ahmadrezaei, W.R.W. Daud, “Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3−δ perovskite oxide cathode nanofibers”, Journal of Alloys and Compounds, Vol. 509, pp. 9005-9009, 2011.
[10] Q. Li, L.P. Sun, H. Zhao, H.L. Wang, L.H. Huo, A. Rougier, S. Fourcade, J.C. Grenier, “La1.6Sr0.4NiO4 one-dimensional nanofibers as cathode for solid oxide fuel cells”, Journal of Power Sources, Vol. 263, pp. 125-129, 2014.
[11] W.R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, 1839.
[12] G. Hoogers, “Fuel cell technology handbook. CRC press”, 2002.
[13] K. Xie, R.Q. Yan, X.Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[14] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and cofiring”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, 2008.
[15] B.H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[16] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E.D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni- BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, 2011.
[17] J. Jing, J. Pang, L. Chen, H. Zhang, Z. Lei, Z. Yang, “Structure, synthesis, properties and solid oxide electrolysis cells application of Ba(Ce, Zr)O3 based proton conducting materials”, Chemical Engineering Journal, Vol. 429, pp. 132214, 2022.
[18] Y. Yoo, N. Lim, “Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate -zirconate thin film electrolyte.”, Journal of Power Sources, Vol. 229, pp. 48-57, 2013.
[19] J.H. Kim, J. Hong, D-K. Lim, S. Ahn, J. Kim, J.K. Kim, DH. Oh, SH. Jeon, S-J. Song, WC. Jung, “Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxide.”, Energy & Environmental Science, Vol. 15, pp. 1097, 2022.
[20] T-H. Lee, L. Fan, C-C. Yu, F.E. Wiria, P-C. Su, “A high-performance SDC-infiltrated nanoporous silver cathode with superior thermal stability for low temperature solid oxide fuel cells.”, Journal of Materials Chemistry A, Vol. 6, pp. 7357-7363, 2018.
[21] C. Zhao, Y. Li, W. Zhang, Y. Zhang, X. Lou, B. Yu, J. Chen, Y. Chen, M. Liu, J. Wang, “Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells.”, Energy & Environmental Science, Vol. 13, pp. 53-85, 2020.
[22] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, 2004.
[23] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[24] R.B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol–gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[25] D.H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, 2004.
[26] W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF nanopowder from cellulose-glycine-nitrate process and its application in intermediate-temperature solid-oxide fuel cells”, The American Ceramic Society, Vol. 91, pp. 1155-1162, 2008.
[27] A. Aytimur, S. Kocyigit, I. Uslu, “Calcia stabilized ceria doped zirconia nanocrystalline ceramic”, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 24, pp. 927-932, 2014.
[28] S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma. An Introduction to Electrospinning and Manofibers. World Scientific.
[29] N. Bhardwaj, SC. Kundu, “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, Vol. 28, pp. 325-347, 2010.
[30] A. Khalf, SV. Madihally, “Recent advances in multiaxial electro- spinning for drug delivery”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 112, pp.1-17, 2016.
[31] S.T. Aruna, L.S. Balaji, S. Senthil Kumar, B. Shri Prakash, “Electrospinning in solid oxide fuel cells - a review”, Renewable and Sustainable Energy Reviews, Vol. 67, pp. 673-682, 2017.
[32] X. Zhu, Z. Lü, B. Wei, X. Huang, Y. Zhang, W. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, 2011.
[33] M. Jabbari, R. Bulatova, A.I.Y. Tok, C.R.H. Bahl, E. Mitsoulis, J.H. Hattel, “Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis”, Materials Science and Engineering: B, Vol. 212, pp. 39-61, 2016.
[34] J.M. Serra, W.A. Meulenberg, “Thin‐film proton BaZr0.85Y0.15O3 conducting electrolytes: toward an intermediate‐temperature solid oxide fuel cell alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[35] Baharuddin, Nurul Akidah, Andanastuti Muchtar, Mahendra Rao Somalu, “Short review on cobalt-free cathodes for solid oxide fuel cells”, International Journal of Hydrogen Energy, Vol. 42, pp. 9149-9155, 2017.
[36] T. Takahashi, H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, 1971.
[37] Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, “Recent progress on advanced materials for solid‐oxide fuel cells operating below 500 °C”, Advanced Materials, Vol. 29, pp.170132-170160, 2017.
[38] S. Suna, Z. Cheng, “Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC”, Journal of The Electrochemical Society, Vol. 164, pp. F3104-F3113, 2017.
[39] R.R. Peng, T.Z. Wu, W. Liu, X.Q. Liu, G.Y. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol. 20, pp. 6218-6225, 2010.
[40] J. Larminie and A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS, Inc. , England, 2000.
[41] N. Hildenbrand, Improving the electrolyte-cathode assembly for mt-SOFC., Ipskamp Printing., Netherlands, 2011.
[42] 蕭旭庭,「Pr1-XSrXCoO3-δ固態氧化物燃料電池陰極材料研究」,國立中山大學,碩士論文,民國105年。
[43] K. Kordesch and G. Simader, “Fuel Cells and Their Applications”, VCH, New York, 1996.
[44] A. Poursaee, “Corrosion sensing for assessing and monitoring civil infrastructures”, Sensor Technologies for Civil Infrastructures, Vol 1, pp. 357-382, 2014.
[45] ]N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp.232, 2006.
[46] F. H. van Heuveln and H. J. M. Bouwmeester,” Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia: II. Electrode Kinetics”, Journal of The Electrochemical Society, Vol. 144, pp.134, 1997.
[47] Y. J. Leng, S. H. Chen, K. A. Khor, and S. P. Jiang, “Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte”, International Journal of Hydrogen Energy, Vol. 29, pp.1025-1033, 2004.
[48] G. Yang, W. Jung, S.J. Ahn, D. Lee, “Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes”, Applied Sciences, Vol. 9, pp. 1030, 2019.
[49] T.J. Huang, C.L. Chou, “Oxygen Dissociation and Interfacial Transfer Rate on Performance of SOFCs with Metal-Added (LaSr)(CoFe)O3 -(Ce,Gd)O2–δCathodes”, Fuel Cells, Vol. 4, pp. 718-725, 2010.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明