博碩士論文 109826001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:52.14.240.57
姓名 蔡承翰(Cheng-Han Cai)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 白血病抑制因子活化蛋白酶激活受體1進而促進鼻咽癌細胞的遷移
(Leukemia inhibitory factor activates protease activated receptor 1 to promote NPC cell migration)
相關論文
★ 白血病抑制因子調控口腔癌巨噬細胞免疫反應★ 含EBV病毒產物之外泌小體經由活化纖維母細胞重塑腫瘤微環境
★ 靜磁場於癌細胞的生物效應★ 白血病抑制因子促進Gα12介導的鼻咽癌細胞遷移能力
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 白血病抑制因子(LIF)和凝血酶受體(PAR1)與鼻咽癌的惡化有關。已經有文獻報導
LIF、 PAR1這兩者的過表現會促使鼻咽癌癌細胞的生長、侵犯以及轉移,鼻咽癌病人血
清與腫瘤組織中LIF的高表現量與較差的預後有關。由次世代定序的分析結果顯示LIF影
響PAR1訊息傳導路徑。本研究目的是要瞭解這LIF與PAR1相互關係以及對細胞功能上
的影響。在此研究中,我們發現LIF透過LIFR去活化PAR1與其下游訊號分子,包含mTOR、
SRC、 p70S6k以及活化型YAP1的表現量,而LIF的刺激促使鼻咽癌細胞型態上轉化成梭
狀細長型且細胞爬行能力增強。利用PAR1抑制劑Vorapaxar抑制受LIF刺激而活化的
PAR1及YAP1訊息傳導路徑,而其導致的生物效應包含細胞的萎縮及細胞爬行能力低落,
證明了PAR1會參與LIF對YAP1刺激的訊息傳遞。
綜合以上結果,本研究闡明在鼻咽癌腫瘤細胞中LIF透過刺激PAR1進而促進細胞移
動的能力並影響YAP1訊息傳導,說明LIF除了透過LIFR影響下游分子外,亦會透過PAR1
執行複雜生物效應,進一步瞭解LIF於鼻咽癌的惡性化的分子機轉與對鼻咽癌細胞功能
的影響。
摘要(英) Leukemia inhibitory factor (LIF) and Protease activated receptor 1 (PAR1) are associated
with nasopharyngeal carcinoma (NPC) progression. It has been reported that overexpression of
LIF and PAR1 can enhance NPC tumor growth, invasion, and metastasis. Further, higher levels
of LIF in the serum and tumor tissues of NPC patients are correlated with poorer prognosis.
Our previous next-generation sequencing (NGS) data revealed that LIF induced expressions of
a gene set involved in PAR1 signaling pathway. The main purpose of this study is to investigate
the regulatory network between LIF and PAR1. We found that LIF stimulation activated PAR1
and its downstream signaling molecules, including mTOR, SRC, p70S6K, and YAP1 through
LIF receptor (LIFR). Functionally, LIF stimulation in NPC cells induced a spindle-like
appearance and an enhanced cell mobility. Usage of a PAR1 antagonist, Vorapaxar, suppressed
LIF-mediated effects on the activation of PAR1 and YAP1 signaling pathways, resulting in cell
shrinkage and reduced cell mobility. These data showed that PAR1 plays a role in LIF-mediated
biological effects in NPC.
Together, this study reveals that LIF activates PAR1 signaling through LIFR and further
clarifies the LIF-mediated regulatory network in NPC progression.
關鍵字(中) ★ 白血病抑制因子
★ 蛋白酶激活受體 1
★ 鼻咽癌
關鍵字(英) ★ Leukemia inhibitory factor
★ protease activated receptor 1
★ NPC
★ LIF
★ PAR1
論文目次 目 錄
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 v
符號說明 vi
一、 Introduction 1
1-1 Nasopharyngeal Carcinoma Cell (NPC) 1
1-2 Leukemia Inhibitory Factor (LIF) 2
1-2-1 Role of LIF in NPC 3
1-3 Protease Activated Receptor 1 (PAR1) 3
1-3-1 Relationship of PAR1 in NPC 4
1-3-2 PAR1 antagonist – Vorapaxar (SCH 530348) 5
1-4 Yes-associated-protein 1 (YAP1) 5
1-4-1 Role of YAP1 in NPC 6
二、 Method 7
2-1 Cell culture 7
2-2 xCELLigence Real Time Cell Analyzer (RTCA) 7
2-3 Protein lysis and Western blot 8
2-4 Immunofluorescence 9
2-5 Transfection 10
2-6 Wound healing assay 10
2-7 Reagent 10
2-8 Statistic 10
三、Results 11
3-1 PAR1 and LIF are positively correlated in head and neck squamous cell carcinoma (HNSC)dataset. 11
3-2 Stimulation enhances activation of PAR1 and its downstream signaling molecules through LIFR in NPC cell 11
3-3 The binding of LIF to LIFR enhances activation of PAR1 signaling in NPC cells. 11
3-4 Vorapaxar inhibits LIF signaling through PAR1 11
3-5LIF promotes YAP activation and YAP nuclear translocation via PAR1 12
3-6Vorapaxar decreases the effect of LIF on cell migration 13

四、 Discussions 14
五、 Figures 17
參考文獻 33
參考文獻 1. Zhou, X., et al., A comprehensive risk score for effective risk stratification and screening of nasopharyngeal carcinoma. Nature Communications, 2021. 12(1): p. 5189.
2. Lisa Licitra, J.B., Esteban Cvitkovic, Cesare Grandi, and P.B. Silvia Spinazze, Gemma Gatta, Roberto Molinari, Cancer of the nasopharynx. Critical Reviews in Oncology/Hematology 2003.
3. Thorley-Lawson, D.A., et al., The pathogenesis of Epstein–Barr virus persistent infection. Current Opinion in Virology, 2013. 3(3): p. 227-232.
4. Li, X., et al., HLA associations with nasopharyngeal carcinoma. Curr Mol Med, 2009. 9(6): p. 751-65.
5. Timmy Richardo , P.P., Chawalit Ngernsombat ,, H.I. Nurulfitri Wisetyaningsih , Hironori Yoshiyama and, and T. Janvilisri, Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. cancers, 2020.
6. Anne W.M. Lee, W.T.N.a., Y.H. Chan b, Henry Sze a, Connie Chan a, T.H. Lam The battle against nasopharyngeal cancer. Radiotherapy and Oncology 2012.
7. Nicola, N.A. and J.J. Babon, Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev, 2015. 26(5): p. 533-44.
8. Gearing, D.P., et al., Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. The EMBO Journal, 1991. 10(10): p. 2839-2848.
9. Stahl, N., et al., Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science, 1994. 263(5143): p. 92-5.
10. Efthymiou, A.G., et al., Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther, 2014. 14(9): p. 1333-44.
11. Schaper, F., et al., Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression. Biochem J, 1998. 335 ( Pt 3): p. 557-65.
12. Schiemann, W.P., J.L. Bartoe, and N.M. Nathanson, Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J Biol Chem, 1997. 272(26): p. 16631-6.
13. Martini, M., et al., PI3K/AKT signaling pathway and cancer: an updated review. Ann Med, 2014. 46(6): p. 372-83.
14. Hirai, H., P. Karian, and N. Kikyo, Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J, 2011. 438(1): p. 11-23.
15. Liu, S.C., et al., Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest, 2013. 123(12): p. 5269-83.
16. Liu, S.C., et al., Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling. Nat Commun, 2018. 9(1): p. 5105.
17. Trouillas, M., et al., The LIF cytokine: towards adulthood. Eur Cytokine Netw, 2009. 20(2): p. 51-62.
18. Liu, S.C. and Y.S. Chang, Role of leukemia inhibitory factor in nasopharyngeal carcinogenesis. Mol Cell Oncol, 2014. 1(1): p. e29900.
19. Liu, H., et al., The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell, 2012. 3(4): p. 291-304.
20. Duluc, D., et al., Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood, 2007. 110(13): p. 4319-30.
21. Flaumenhaft, R. and K. De Ceunynck, Targeting PAR1: Now What? Trends Pharmacol Sci, 2017. 38(8): p. 701-716.
22. Zhu, Q., et al., The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncol Rep, 2012. 28(1): p. 255-61.
23. Koukos, G., et al., Serine and metalloprotease signaling through PAR1 in arterial thrombosis and vascular injury. IUBMB Life, 2011. 63(6): p. 412-8.
24. Seeley, S., et al., Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding. Chem Biol, 2003. 10(11): p. 1033-41.
25. Mosnier, L.O., et al., Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood, 2012. 120(26): p. 5237-46.
26. Sebastiano, M., et al., A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood, 2017. 129(7): p. 883-895.
27. Trivedi, V., et al., Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 2009. 137(2): p. 332-43.
28. Flynn, A.N. and A.G. Buret, Proteinase-activated receptor 1 (PAR-1) and cell apoptosis. Apoptosis, 2004. 9(6): p. 729-37.
29. Cheng, T., et al., Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med, 2003. 9(3): p. 338-42.
30. Mosnier, L.O. and J.H. Griffin, Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem J, 2003. 373(Pt 1): p. 65-70.
31. Chin, A.C., et al., Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc Natl Acad Sci U S A, 2003. 100(19): p. 11104-9.
32. Fortunato, T.M., et al., Expression of protease-activated receptor 1 and 2 and anti-tubulogenic activity of protease-activated receptor 1 in human endothelial colony-forming cells. PLoS One, 2014. 9(10): p. e109375.
33. Yang, R., et al., Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. Onco Targets Ther, 2013. 6: p. 1139-46.
34. Wojtukiewicz, M.Z., et al., Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer Metastasis Rev, 2015. 34(4): p. 775-96.
35. Erturk, K., et al., Clinical significance of serum protease activated receptor1 levels in patients with lung cancer. Eur Rev Med Pharmacol Sci, 2016. 20(2): p. 243-9.
36. Gurbel, P.A., Y.H. Jeong, and U.S. Tantry, Vorapaxar: a novel protease-activated receptor-1 inhibitor. Expert Opin Investig Drugs, 2011. 20(10): p. 1445-53.
37. Flaumenhaft, R., Protease-Activated Receptor-1 Signaling: The Big Picture. Arterioscler Thromb Vasc Biol, 2017. 37(10): p. 1809-1811.
38. Aisiku, O., et al., Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood, 2015. 125(12): p. 1976-85.
39. Zhang, C., et al., High-resolution crystal structure of human protease-activated receptor 1. Nature, 2012. 492(7429): p. 387-92.
40. Morrow, D.A., et al., Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med, 2012. 366(15): p. 1404-13.
41. Gryka, R.J., L.F. Buckley, and S.M. Anderson, Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease. Drugs R D, 2017. 17(1): p. 65-72.
42. Ungar, L., et al., Stroke Outcomes With Vorapaxar Versus Placebo in Patients With Acute Coronary Syndromes: Insights From the TRACER Trial. J Am Heart Assoc, 2018. 7(24): p. e009609.
43. Reggiani, F., et al., YAP and TAZ Are Not Identical Twins. Trends Biochem Sci, 2021. 46(2): p. 154-168.
44. Zanconato, F., M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer. Cancer Cell, 2016. 29(6): p. 783-803.
45. Piccolo, S., S. Dupont, and M. Cordenonsi, The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev, 2014. 94(4): p. 1287-312.
46. Shin, E. and J. Kim, The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med, 2020. 52(8): p. 1264-1274.
47. Dupont, S., et al., Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474(7350): p. 179-83.
48. Totaro, A., T. Panciera, and S. Piccolo, YAP/TAZ upstream signals and downstream responses. Nat Cell Biol, 2018. 20(8): p. 888-899.
49. Kapoor, A., et al., Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell, 2014. 158(1): p. 185-197.
50. Zanconato, F., et al., Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol, 2015. 17(9): p. 1218-27.
51. Johnson, R. and G. Halder, The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov, 2014. 13(1): p. 63-79.
52. Huang, Z., et al., YAP1 Promotes Tumor Invasion and Metastasis in Nasopharyngeal Carcinoma with Hepatitis B Virus Infection. Onco Targets Ther, 2020. 13: p. 5629-5642.
53. Zhou, Y., R. Yang, and G. Ma, [YAP1 knockdown suppresses the proliferation, migration and invasion of human nasopharyngeal carcinoma cells]. Nan Fang Yi Ke Da Xue Xue Bao, 2019. 39(3): p. 286-291.
54. Chen, Y.H., et al., Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J Biol Chem, 1994. 269(44): p. 27372-7.
55. Parrales, A., et al., ERK1/2-dependent activation of mTOR/mTORC1/p70S6K regulates thrombin-induced RPE cell proliferation. Cell Signal, 2013. 25(4): p. 829-38.
56. Kawazoe, T., et al., Autocrine Leukemia Inhibitory Factor Promotes Esophageal Squamous Cell Carcinoma Progression via Src Family Kinase-Dependent Yes-Associated Protein Activation. Mol Cancer Res, 2020. 18(12): p. 1876-1888.
57. Li, X., et al., LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget, 2014. 5(3): p. 788-801.
58. Mo, J.S., et al., Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev, 2012. 26(19): p. 2138-43.
59. Guo, L. and L. Teng, YAP/TAZ for cancer therapy: opportunities and challenges (review). Int J Oncol, 2015. 46(4): p. 1444-52.
60. Fujimoto, D., et al., PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway. Oncotarget, 2015. 6(33): p. 34788-99.
61. Zanconato, F., et al., YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol, 2016. 29: p. 26-33.
指導教授 劉淑貞(Shu-Chen Liu) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明