博碩士論文 109226076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.152.139
姓名 鍾佺翰(Chuan-Han Chung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非厄米特二階拓樸電路之研究
(The Research of Non-Hermitian Second-Order Topological Electric Circuits)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 一維光子晶體等效非均向介值之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討二維二階非厄米特拓樸絕緣體 (second-order topological insulator) 的物理特性。我們分別考慮方形晶格與可果美晶格兩種晶格型態,然後以電路的方式實現此拓樸絕緣體,並觀察零維的角態 (corner states) 與一維的非無能隙邊緣態 (non-gapless edge states) 如何形成。此電路系統可利用克希荷夫電路定律 (Kirchhoff′s circuit laws) 分別針對完全週期性的晶格 (periodic lattice) 結構與具有開放邊界 (open boundaries) 的有限週期結構兩種情況推導出電路拉普拉斯算符 (Circuit Laplacian) 與哈密頓矩陣 (Hamiltonian matrix),並解出後者的本徵值與本徵向量。其中本徵向量給出此系統的本徵振盪模態 (modes),而本徵值就是模態的 (複數) 振動頻率。分別考慮方形晶格與可果美晶格的拓樸不變量 (topological invariant),就可以在這兩種晶格結構中區分不同的二階拓樸相,以確認角態的存在。
摘要(英) In the thesis, we mainly discuss the physical properties of two-dimensional second-order non-Hermitian topological insulators. Structures of square lattice and Kagome lattice are considered, and the topological insulators are realized by means of appropriately defined electric circuits with the corresponding lattice structures. The study focuses on the zero-dimensional corner states instead of the one-dimensional non-gapless edge states.
  We use Kirchhoff′s circuit laws to derive the circuit Laplacian and Hamiltonian of the circuits for both the periodic lattice structure without boundary and the finite periodic structure with open boundaries. The circuit Hamiltonian matrix is used to solve for the eigenmodes/eigenstates of the system and their corresponding (complex valued) eigenfrequencies.
  Different topological phases can be distinguished by the topological invariants defined according to the band structures of the system, and the existence of the corner states can be confirmed by checking the topological invariants.
關鍵字(中) ★ 非厄米特
★ 二階拓樸
★ 角態
關鍵字(英)
論文目次 摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 拓樸絕緣體 1
1-2 非厄米特系統 3
1-3 布洛赫定理、貝瑞相與陳數 5
第二章 研究理論 8
2-1 Su-Schrieffer-Heeger 模型 8
2-2 非厄米特 Su-Schrieffer-Heeger 模型 11
2-3 廣義布洛赫能帶理論 14
2-4 線性電路理論與電路拉普拉斯算符 17
第三章 電路模型與研究方法 19
3-1 非厄米特系統電路架構 19
3-2 導納譜和阻抗峰值 20
3-3 二階非厄米特方形拓樸電路 21
3-4 二階厄米特可果美拓樸電路 24
3-5 二階非厄米特可果美拓樸電路 29
3-5-1 並聯結構 29
3-5-2 串聯結構 31
第四章 研究模擬與討論 39
4-1 一維 Su-Schrieffer-Heeger 模型 39
4-2 一維非厄米特 Su-Schrieffer-Heeger 模型 40
4-3 非厄米特系統電路模型與局域態密度 44
4-4 二階非厄米特方形拓樸電路與角態 52
4-5 二階厄米特可果美拓樸電路與角態 57
4-6 二階非厄米特可果美拓樸電路與角態 63
4-6-1 並聯結構 63
第五章 結論與未來展望 70
5-1 結論 70
5-2 未來展望 70
參考文獻 71
參考文獻 [1] Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, 45, 494 (1980)
[2] Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, 49, 405 (1982)
[3] 蔡雅雯、吳杰倫、欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學, 科儀新知, 211期, 68 (2017).
[4] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly", Physical Review Letters, 61, 2015 (1988)
[5] C.L. Kane, and E.J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters 95, 226801 (2005)
[6] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 – Published 28 September 2005
[7] F. D. M. Haldane & S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystalswith Broken Time-Reversal Symmetry, Physical Review Letters, 100, 013904 (2008)
[8] T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016)
[9] Y. Xiong, Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2, 035043 (2018)
[10] I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A 42, 153001 (2009)
[11] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in PT Symmetric Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).
[12] S. Longhi, Bloch Oscillations in Complex Crystals with PT Symmetry, Phys. Rev. Lett. 103, 123601 (2009).
[13] L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological photonics, Nat. Photonics 8, 821 (2014)
[14] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, NonHermitian physics and pt symmetry, Nat. Phys. 14, 11 (2018)
[15] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rotter & Demetrios N. Christodoulides, Non-Hermitian physics and PT symmetry, Nature Physics volume 14, pages11–19 (2018)
[16] Mohammad-Ali Miri, Andrea Alù, Exceptional points in optics and photonics, SCIENCE Vol 363, Issue 6422 (2019)
[17] Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study
of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)
[18] Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a
microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).
[19] Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on
parity-time symmetry. Nat. Commun. 6, 5905 (2015)
[20] Hang, C., Huang, G. & Konotop, V. V. PT symmetry with a system of
three-level atoms. Phys. Rev. Lett. 110, 083604 (2013)
[21] Asbóth, János K., Oroszlány, László, Pályi, András, A Short Course on Topological Insulators (Springer, Lecture Note in Physics, 2016)
[22] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016)
[23] Shunyu Yao, Zhong Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121, 086803 (2018)
[24] Kazuki Yokomizo and Shuichi Murakami, Non-Bloch Band Theory of Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404 (2019)
[25] Ken-Ichiro Imura, Yositake Takane, Generalized Bloch band theory for non-Hermitian bulk-boundary correspondence, arXiv:2004.14772
[26] Naomichi Hatano and David R. Nelson, Localization Transitions in Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570 (1996)
[27] Naomichi Hatano and David R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B 56, 8651 (1997)
[28] Ken-Ichiro Imura and Yositake Takane, Generalized bulk-edge correspondence for non-Hermitian topological systems, Phys. Rev. B 100, 165430 (2019)
[29] Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling, Frank Schindler, Ching Hua Lee, Martin Greiter, Titus Neupert & Ronny Thomale, Topolectrical-circuit realization of topological corner modes, Nature Physics volume 14, pages925–929 (2018)
[30] Junkai Dong, Vladimir Juričić, and Bitan Roy, Topolectric circuits: Theory and construction, Phys. Rev. Research 3, 023056 (2021)
[31] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling & Ronny Thomale, Topolectrical Circuits, Communications Physics volume 1, Article number: 39 (2018)
[32] Motohiko Ezawa, Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization, Phys. Rev. B 99, 201411(R) (2019)
[33] Jien Wu, Xueqin Huang, Yating Yang, Weiyin Deng, Jiuyang Lu, Wenji Deng, and Zhengyou Liu, Non-Hermitian second-order topology induced by resistances in electric circuits, Phys. Rev. B 105, 195127 (2022)
[34] Jien Wu, Xueqin Huang, Jiuyang Lu, Ying Wu, Weiyin Deng, Feng Li, and Zhengyou Liu, Observation of corner states in second-order topological electric circuits, Phys. Rev. B 102, 104109 (2020)
[35] Bi-Ye Xie, Hong-Fei Wang, Hai-Xiao Wang, Xue-Yi Zhu, Jian-Hua Jiang, Ming-Hui Lu, and Yan-Feng Chen, Second-order photonic topological insulator with corner states, Phys. Rev. B 98, 205147 (2018)
[36] Josias Langbehn, Yang Peng, Luka Trifunovic, Felix von Oppen, and Piet W. Brouwer, Reflection-Symmetric Second-Order Topological Insulators and Superconductors, Phys. Rev. Lett. 119, 246401 (2017)
[37] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, NonHermitian physics and pt symmetry, Nat. Phys. 14, 11 (2018)
[38] Motohiko Ezawa, Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits, Phys. Rev. B 99, 121411(R) (2019)
[39] Motohiko Ezawa, Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev. Lett. 120, 026801 (2018)
[40] Motohiko Ezawa, Higher-order topological electric circuits and topological corner resonance on the breathing kagome and pyrochlore lattices, Phys. Rev. B 98, 201402(R) (2018)
[41] Xiancong Lu, Ying Chen, and Huanyang Chen, Orbital corner states on breathing kagome lattices, Phys. Rev. B 101, 195143 (2020)
[42] Hai-Xiao Wang, Chengpeng Liang, Yin Poo, Pi-Gang Luan and Guang-Yu Guo, The topological edge modes and Tamm modes in Su–Schrieffer–Heeger LC-resonator circuits, Journal of Physics D: Applied Physics, Volume 54, Number 43
[43] Huanhuan Yang, Z.-X. Li, Yuanyuan Liu, Yunshan Cao, and Peng Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Research 2, 022028(R) (2020)
[44] Victor V. Albert, Leonid I. Glazman, and Liang Jiang, Topological Properties of Linear Circuit Lattices, Phys. Rev. Lett. 114, 173902 (2015)
[45] Jia Ningyuan, Clai Owens, Ariel Sommer, David Schuster, and Jonathan Simon, Time- and Site-Resolved Dynamics in a Topological Circuit, Phys. Rev. X 5, 021031 (2015)
[46] Tal Goren, Kirill Plekhanov, Félicien Appas, Karyn Le Hur, Topological Zak Phase in Strongly-Coupled LC Circuits, arXiv:1711.02034
[47] Tobias Helbig, Tobias Hofmann, Ching Hua Lee, Ronny Thomale, Stefan Imhof, Laurens W. Molenkamp, and Tobias Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99, 161114(R) (2019)
[48] Weiwei Zhu, Shanshan Hou, Yang Long, Hong Chen, and Jie Ren, Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network, Phys. Rev. B 97, 075310 (2018)
[49] Zhi-Qiang Zhang, Bing-Lan Wu, Juntao Song, and Hua Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100, 184202 (2019)
指導教授 欒丕綱 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明