以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:90 、訪客IP:18.188.18.32
姓名 郭學牧(Xue-Mu Kuo) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 寬頻液晶四分之一波板之研究及其應用
(Studies of broadband quarter waveplates and their applications)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-7-1以後開放) 摘要(中) 波板(Waveplate)的應用在許多光電科技相關元件或產品上是不可或缺的重要組件,相較於其他固定式的波板薄膜,液晶波板能更便利地利用電控雙折射的特性改變其相位延遲,從而使光的偏振態產生改變。本論文主要研究寬頻液晶四分之一波板之光電特性以及其應用,主要利用理論計算與1D DIMOS軟體模擬慢軸和y軸夾角15°的液晶半波板與慢軸和y軸夾角75°的液晶四分之一波板的疊合,此組合可得一寬頻液晶四分之一波板,並驗證當入射光朝+z方向行進時,若為偏振方向與y軸夾角0°之線偏振光,其出射為圓偏振光,其中使用到偏振態的Stokes parameter及瓊斯矩陣運算,得到出射為高圓偏振度之圓偏振光之結果。而後續再結合90°扭轉向列型液晶旋轉前述之0°線偏振光之偏振方向至90°線偏振,此入射角的改變並不會影響出射穿透度及圓偏振度絕對值,僅僅改變出射圓偏振光之旋性。後續實驗結果也證實能以電控的形式控制液晶的相位延遲,進而得到組成寬頻液晶四分之一波板所需用的液晶半波板與液晶四分之一波板,並在寬頻液晶四分之一波板頻譜的量測中證實與模擬結果相同之高圓偏振度出射結果。在後續搭配90°扭轉向列型液晶實驗中也驗證了出射圓偏振光之旋性可以施加電壓的方式進行切換。 摘要(英) Waveplate is considered as an indispensable and important part for electronics. Compared with other waveplate thin films having a fixed phase retardation, the birefringence of liquid crystals (LCs) canbe electrically tuned to change the provided phase retardation. Therefore,the polarization of light passing through the LCs can be modulated.The main research topic reported in this thesis is the electro-optical properties and applications of LC broadband quarter waveplate. The theoretical calculation and 1D DIMOS software are used to simulate the superposition ofa LC half-waveplate with anazimuthalangle of15° made by its slow axisand y-axis and aLC quarter-waveplate with anazimuthal angle of 75° made by it slow axis and y-axis. A broadband quarter waveplate can be obtained by combining the waveplates with specific orientations of their slow axes. When the incident light is going toward +z direction and is linearly polarized with an angle of 0° with respect to y-axis, the outgoing light is circularly polarized. By analyzing Stokes parameters and Jones calculus, the outgoing lightcan be confirmed to be a circularly polarized light with a high degree of circular polarization (DOCP) value. Moreover, the broadband quarter waveplate combined with a 90° twisted nematic LC (90°-TNLC) cellcan electrically switchthe handedness of the outgoing circularly polarized light. Experimentally, it is also confirmed that the phase retardation provided by the LCs can be electrically controlled, and then the required half-waveplate and quarter-waveplate can be obtained to achievea broadband quarter waveplate. The measurement of the spectra confirms the same high DOCPvalue of the outgoing lightconsistent with the simulation results.It is also experimentally confirmed that the broadband quarter waveplate combined with a 90°-TNLC cellcan be used to switch the handedness of the outgoing circularly polarized light by applying a suitable voltage. 關鍵字(中) ★ 液晶
★ 波板
★ 寬頻
★ 圓偏振光
★ 電控關鍵字(英) ★ liquid crystals
★ waveplate
★ broadband
★ circular porized light
★ electrically-controlled論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
符號說明 xi
第一章緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 文獻回顧[1] 1
§1-4 論文架構 3
第二章液晶簡介 5
§2-1 液晶的定義 5
§2-1-1液晶的由來 5
§2-1-2物質的分類 6
§2-2 液晶的分類 7
§2-2-1向列型液晶(Nematics) 8
§2-2-2層列型液晶(Smectics) 9
§2-2-3膽固醇型液晶(Cholesterics, N*) 12
§2-3 液晶物理與光電特性 14
§2-3-1光學異向性(Optical anisotropy) 14
§2-3-2介電異向性(Dielectric anisotropy) 19
§2-3-3連續彈性體理論(The elastic continuum theory)[13][17] 21
§2-3-4 Fréedericksz transition [7] 23
第三章實驗相關理論 24
§3-1 摩擦配向[18] 24
§3-2溝槽模型理論(Groove theory)[18][19] 25
§3-3光的偏振 26
§3-3-1Stokes parameter [21] 28
§3-3-2偏振度(Degree of polarization, DOP)[21] 29
§3-3-3線偏振度(Degree of linear polarization, DOLP) 30
§3-3-4 圓偏振度(Degree of circular polarization, DOCP) 31
§3-4 瓊斯運算(Jones calculus) 32
§3-4-1 瓊斯向量(Jones vector) 32
§3-4-2 瓊斯矩陣(Jones matrix) 34
§3-4-3 穿透率計算 36
§3-5扭轉向列型液晶(Twisted Nematic Liquid Crystals) 37
§3-5-1 90°扭轉向列型液晶(90°-TNLC) 37
§3-5-2 Mauguin’s condition 39
§3-5-3 Gooch-Terry condition 40
第四章實驗架設與過程 43
§4-1 實驗材料介紹 43
§4-2 液晶盒製作流程 44
§4-2-1 玻璃基板處理 44
§4-2-2 基板表面配向處理 45
§4-2-3液晶空盒製作 45
§4-2-4 注入液晶材料 46
§4-3 實驗架設與流程 46
§4-3-1 量測液晶空盒厚度 46
§4-3-2 電控正型液晶光電特性 48
§4-3-3 寬頻液晶波板頻譜量測 49
第五章實驗結果與討論 51
§5-1 寬頻液晶四分之一波板之光電表現計算與模擬結果 51
§5-1-1 液晶半波板與液晶四分之一波板疊加計算 51
§5-1-2 透過1D DIMOS軟體模擬寬頻液晶四分之一波板 54
§5-1-3 90°-TNLC與寬頻液晶四分之一波板之疊加模擬結果 63
§5-2 寬頻液晶四分之一波板實驗與量測結果 65
§5-2-1電控液晶波板實驗結果 65
§5-2-2 電控寬頻液晶四分之一波板(BBQWPR_632.8)實驗結果 70
§5-2-3 電控90°-TNLC光學表現 73
§5-2-4可切換旋性之寬頻液晶四分之一波板(T-BBQWP632.8) 75
§5-3 實驗結果與模擬數據誤差討論 79
§5-3-1 圓偏振度DOCP之計算 79
§5-3-2 液晶材料色散誤差 80
§5-4 電控寬頻液晶四分之一波板之應用概念描述 81
第六章結論與未來展望 85
§6-1 結論 85
§6-2 未來展望 86
§6-2-1相位延遲片之偏振選擇研究 86
§6-2-2電控反射鏡之應用延伸 88
參考文獻 90參考文獻 [1] S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proceedings of the Indian Academy of Science. A41,130-144 (1955).
[2] F. Reinizer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[3] T. Geelhaar, K. Griesar and B. Reckmann,“125 Years of Liquid Crystal Research-A Scientific Revolution in the Home,” Angew. Chem. Int. Ed. 52, 8798-8809 (2013).
[4] P. Flowers, K. Theopold and R. Langley, “Chemistry,” Openstax (2016).
[5] P. Rajak, L. K. Nath and B. Bhuyan, “Liquid Crystals: An Approach in Drug Delivery” Indian J Pharm Sci 81(1), 11-21 (2019).
[6] R. K. Shukla and K. K. Raina, “Effects of CuCl2 on the Lyotropic Liquid Crystalline Behavior in Nonaqueous and Aqueous Medium.” Adva. Condens. Matter Phys. 2011 174786 (2011).
[7] E.I.Kovshev, L.M.BIinov, and V.V.Titov, “Thermotropic Liquid Crystals and Their Applications,” Uspekhi Khimii, 46, 753-798 (1977).
[8] F. S.Poletto, S. R. Montoro and M. L. Tebaldi, “Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems,” Elsevier Inc., Amsterdam (2016).
[9] S.Chandrasekhar1 and G.S.Ranganath, “Discotic liquid crystals,” Prog. Phys. 53, 57-82 (1990).
[10] https://ir.nctu.edu.tw/bitstream/11536/81192/3/854703.pdf
[11] H. Mada and S. Kobayashi, “Surface and bulk order parameters of a nematic liquid crystal,” Appl. Phys. Lett. 35, 4 (1979).
[12] H. A. van Sprang, “Surface-induced order in a layer of nematic liquid crystal,” J. Phys. France, 44, 421-426 (1983).
[13] 松本正一,角田市良,液晶之基礎與運用(國立編譯館,1996).
[14] D. Demus and L. Richter, “Textures of Liquid Crystals,” VEB Deutscher Verlag für Grundstoffindustrie, 16, 527 (1981).
[15] 田景瑞,“熱退火處裡對膽固醇液晶平面結構之改善”,國立彰化師範大學,博士論文,民國九十八年.
[16] R. B. Meyer, L. Liebert, L. Strzelecki and P. Keller, “Ferroelectric liquid crystals,” J. Physique Lett., 36, 69-71 (1975).
[17] I. W. Stewart, “Continuum Theory for Liquid Crystals,” Department of Mathematics and Statistics, University of Strathclyde (2013).
[18] K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, “Alignment Technology and Applications of Liquid Crystal Devices,” CRC Press, Florida (2019).
[19] D. D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett.28, 1683-1686 (1972).
[20] C. Gear, K. Diest, V. Liberman, and M. Rothschild, “Engineered liquid crystal anchoring energies with nanopatterned surfaces,” Opt. Express, 23, 807-814 (2015).
[21] B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75, 163-168 (2007).
[22] J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys.95, 896-901 (2004).
[23] M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720-722 (1997).
[24] C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[25] O. D. Lavrentovich and M. Kleman, “Chirality in Liquid Crystals,” Springer Science, New York (2001).指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2022-9-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare