博碩士論文 110222010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.218.38.125
姓名 黃威瑀(Wei-Yu Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 六方氮化硼透過化學氣相沉積法合成在銅上的成核與生長動力學
(Nucleation and growth kinetics of hexagonal boron nitride on copper through chemical vapor deposition)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單層六方氮化硼(hBN)是一種具有sp2結構的單原子層二維材料。其大帶隙、無懸空鍵、穩定的物化特性使hBN成為極佳的絕緣體和基板。化學氣相沉積法已廣泛用於二維材料製造,具有低成本、晶圓級生產等特性。然而,hBN晶格的三重對稱性具有多種的晶相,晶體聚合時可形成晶界缺陷,從而降低hBN的品質。因此,產生大晶粒尺寸和晶相一致的hBN,以降低薄膜上的晶界缺陷是重要的。為達到目的,我們須了解hBN的生長機制,以控制hBN的生長方式。在這篇論文,我們使用低壓化學氣相沉積法在銅箔上控制生長具有大晶粒尺寸的hBN。
首先,hBN晶相很大程度上取決於銅箔的晶相。因此,銅的預退火對於產生一致的晶相和均勻的催化效果是必要的。通過純氫退火可有效還原氧化層並使銅重新排列成<111>晶相,然後我們通過掃描電子顯微鏡分析hBN晶體旋轉角的分佈,可控制產生大面積單晶相的hBN。接下來,我們研究不同氫氣流率下hBN在銅上的成核和生長動力學。其成核密度和晶粒生長是BN-吸附原子擴散和蝕刻解吸速率之間競爭的結果。在低氫氣流率下,生長以成核為主。在高氫氣流率下,晶粒生長在初始生長階段為主,並能產生晶粒尺寸超過 25um的hBN。我們透過hBN的SEM成像和圖像分析,以及利用Johnson-Mehl-Avrami-Kolmogorov (JMAK)模型來描述hBN的成核和生長動力學。接著,我們發現在高溫下成核和晶粒生長的傾向會反轉,其可能是銅表面形態轉變的結果,在提高生長溫度的時銅表面變得更加起伏並且具有更多的銅原子台階。導致hBN的成核活化能降低。我們透過AFM驗證銅表面形態的轉變。
此外,我們發現由於氫會接在hBN邊緣,導致多層hBN會在高氫氣流率下形成。為了抑制多層hBN的形成。我們添加氮氣可以降低氫末端效應,並進一步研究多層hBN在不同N2:H2氣體比例下的生長行為,其中包括多層hBN在銅表面上的多寡、多層與單層hBN的面積比、第一層與多層hBN之間的扭曲角。
摘要(英) Monolayer hexagonal boron nitride (hBN) is an atomically thin two-dimensional material with sp2 structure. Large band gap, without dangling bonds, and stable physical and chemical properties make hBN an extraordinary van der Waals stacking layers for insulator and supported material. Chemical vapor deposition which has been widely used in 2D material fabrication involve the properties such as low cost, wafer-scaled production. However, threefold symmetry of hBN lattice lead to various orientation in crystalline coalescence which may form grain boundaries defects and then reduce the quality of hBN. Thus, it is important to produce large grain size and aligned orientation hBN to lower the grain boundary defect on the overall film. To achieve the purpose, it is necessary to understand the growth mechanism of hBN for controlling the quality of hBN. In our work, we perform strategies to grow fully-covered hBN with large grain size on copper foil by chemical vapor deposition in low pressure.
First, the orientation of the hBN lattice strongly depends on the orientation of substrate, copper. Thus, copper pre-annealing process is necessary to produce uniform orientation and catalytic effect substrate. Pure hydrogen is confirmed to efficiently reduce copper oxide that promote copper realigned. Then we find out orientations of copper relative to the distribution of different hBN lattice rotation angles by scanning electron microscopy and produce large area single orientation hBN.
Next, we study the synthesis physicochemical mechanism underlying the nucleation and growth kinetics of hBN on copper with different hydrogen flow rate. Its nucleation density and grain growth are the result of competition between the diffusion of the BN-adatom species and etched desorption rate. In low hydrogen flow rate, the growth is overall dominated by nucleation. In high hydrogen flow rate, grain growth dominates in the initial growth stage and produces hBN grain size over 25um. Through SEM imaging of hBN and image analysis, Johnson-Mehl-Avrami-Kolmogorov (JMAK) model of phase transformation is used to describe nucleation and growth kinetics of hBN. Moreover, we found that these phenomena vary in high temperature that the tendency of nucleation and grain growth activation energies are totally reversed. It is result from the transform of the copper surface morphology that becomes more waviness while increasing the growth temperature. The waviness could be the piling up of copper atomic steps. That lead to the lowest nucleation activation energy for hBN. Copper surface morphology transformation is verified by AFM. Furthermore, we found that multilayers hBN would form under high hydrogen flow rate due to H-terminated hBN edges. Then we investigate the hBN growth behavior including density of multilayer, area ratio of multilayer to monolayer, twist angles between first layer and multilayer under different N2:H2 gas ratio. Inducing nitrogen gas may reduce H-terminated effect to suppress the formation of multilayer hBN.
關鍵字(中) ★ 六方氮化硼
★ 化學氣相沉積法
★ 生長機制
★ 二維材料
關鍵字(英) ★ hexagonal boron nitride (hBN))
★ chemical vapor deposition (CVD)
★ growth mechanism
★ 2D material
論文目次 1 Introduction -1-
2 Background -4-
2.1 Introduction of hexagonal boron nitride -4-
2.2 Hexagonal boron nitride synthesis by chemical vapor deposition -8-
2.2.1 Grain boundaries of hBN -8-
2.2.2 Chemical vapor deposition apparatus -13-
2.2.3 Precursor: ammonia borane -14-
2.2.4 Growth of hBN on copper -17-
2.2.4.1 Monolayer hBN -17-
2.2.4.2 Multilayer hBN -18-
2.2.5 hBN grain morphology -19-
2.2.6 Single crystal hBN growth through crystal orientation improvement -25-
2.2.6.1 Fabrication of Cu<111> template -25-
2.2.6.2 Cu<111>/sapphire -27-
2.3 Characterization of hBN -31-
2.3.1 Optical microscope -31-
2.3.2 Scanning electron microscope -31-
2.3.3 Atomic force microscope -32-
2.3.4 X-ray photoelectron spectroscopy -34-
2.3.5 Raman spectroscopy -35-
2.3.6 Johnson–Mehl–Avrami–Kolmogorov (JMAK) model -37-
3 Experiment setup and method -41-
3.1 Electro-polished of copper foil -41-
3.2 hexagonal boron nitride fabrication through CVD -41-
3.3 Wet transfer method for hBN -42-
4 Result and discussion -44-
4.1 Pre-annealing process -45-
4.2 Monolayer hBN growth mechanism -49-
4.2.1 Time evolution growth -49-
4.2.2 Energetic preference -56-
4.3 Multilayer hBN growth behavior -62-
4.3.1 Characterization of multilayer hBN -62-
4.3.2 Multilayer hBN growth behavior in different N2:H2 -64-
5 Conclusion -69-
6 Bibliography -71-
參考文獻 [1] PEASE, R. Crystal Structure of Boron Nitride. Nature 165, 722–723 (1950).
[2] Hugo Henck, et al. Direct observation of the band structure in bulk hexagonal boron nitride. Physical Review B 95, 085410 (2017)
[3] Darshana Wickramaratne, et al. Monolayer to Bulk Properties of Hexagonal Boron Nitride. J. Phys. Chem. C 2018, 122, 25524−25529
[4] Yang, Y., Song, Z., Lu, G. et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature 594, 57–61 (2021).
[5] Mahvash, F., Eissa, S., Bordjiba, T. et al. Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci Rep 7, 42139 (2017).
[6] Lu Hua Li, Jiri Cervenka, Kenji Watanabe, Takashi Taniguchi, and Ying Chen. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 2014 8 (2), 1457-1462
[7] Dean, C., Young, A., Meric, I. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech 5, 722–726 (2010).
[8] Jingang Wang, Fengcai Ma, Wenjie Liang, Mengtao Sun, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Materials Today Physics, Volume 2, 2017, Pages 6-34
[9] L. H.Li, Y.Chen, G.Behan, H.Zhang, M.Petravic, andA. M.Glushenkov,“Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling,” J. Mater. Chem., vol. 21, no. 32, pp. 11862–11866, 2011.
[10] Elias, C., Valvin, P., Pelini, T. et al. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat Commun 10, 2639 (2019).
[11] Chen, TA., Chuu, CP., Tseng, CC. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).
[12] Qiucheng Li, Xiaolong Zou, Mengxi Liu. et al. Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111). Nano Letters 2015 15 (9), 5804-5810
[13] Xibiao Ren, Jichen Dong, Peng Yang. et al. Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Phys. Rev. Materials 3, 014004 – Published 22 January 2019
[14] Cho, H., Park, S., Won, DI. et al. Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface. Sci Rep 5, 11985 (2015).
[15] Ji-Hoon Park, Jin Cheol Park, Seok Joon Yun. et al. Large-Area Monolayer Hexagonal Boron Nitride on Pt Foil. ACS Nano 2014 8 (8), 8520-8528
[16] A. Y. Lozovoi and A. T. Paxton. Boron in copper: A perfect misfit in the bulk and cohesion enhancer at a grain boundary. Phys. Rev. B 77, 165413 – Published 10 April 2008
[17] J.R. Davis, Copper and Copper Alloys, ASM International, Ohia (2001), 177.
[18] Wu, M., Zhang, Z., Xu, X. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020).
[19] Hu, J., Xu, J., Zhao, Y. et al. Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth. Sci Rep 7, 45358 (2017).
[20] M.-C. Chuang, W.-Y. Woon, Nucleation and growth dynamics of graphene on oxygen exposed copper substrate, Carbon 103 (2016) 384e390.
[21] Chun-Chieh Yen, Yu-Chen Chang, Hung-Chieh Tsai, Wei-Yen Woon, Nucleation and growth dynamics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition, Carbon, Volume 154, 2019, Pages 420-427
[22] Yuichi Kubota, et al. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. SCIENCE 17 Aug 2007 Vol 317, Issue 5840 pp.932-934
[23] Babenko, V., Lane, G., Koos, A.A. et al. Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Sci Rep 7, 14297 (2017).
[24] Piran R. Kidambi, Raoul Blume, Jens Kling et al. In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper. Chem. Mater. 2014, 26, 22, 6380–6392.
[25] Shengnan Wang, Jack Crowther, Hiroyuki Kageshima, Hiroki Hibino, and Yoshitaka Taniyasu. Epitaxial Intercalation Growth of Scalable Hexagonal Boron Nitride/Graphene Bilayer Moiré Materials with Highly Convergent Interlayer Angles. ACS Nano 2021, 15, 14384−14393.
[26] Zhuhua Zhang, Yuanyue Liu, Yang Yang, and Boris I. Yakobson. Growth Mechanism and Morphology of Hexagonal Boron Nitride. Nano Lett. 2016, 16, 2, 1398–1403.
[27] Yijing Stehle, Harry M. Meyer, Raymond R. Unocic et al. Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology. Chem. Mater. 2015, 27, 23, 8041–8047.
[28] Hongwei Liu, Wanzhen He, Zhenjing Liu et al. Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition. 2022 2D Mater. 9 015004.
[29] Ruiqi Zhao, Feifei Li, Zhirong Liu, Zhongfan Liu and Feng Ding. The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN’s chemical vapor deposition (CVD) growth. Phys. Chem. Chem. Phys., 2015, 17, 29327.
[30] Gorbachev R V et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7 465–8 (2011)
[31] Walock, Michael. (2012). Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems.
[32] Bramowicz, Miroslaw & Kulesza, Sławomir & Rychlik, K.. (2012). Comparison between contact and tapping AFM modes in surface morphology studies. Technical Sciences. 15. 307-318.
[33] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy#Electron
[34] https://commons.wikimedia.org/w/index.php?curid=7845122.
[35] https://en.wikipedia.org/wiki/Avrami_equation
[36] HoKwon Kim ?? ??., Activation Energy Paths for Graphene Nucleation and Growth on Cu, Acs Nano. 2012;6(4):3614-23
[37] Gao, L., Ren, W., Xu, H. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).
[38] Ruiqi Zhao, Xiaolei Zhao, Zhirong Liu. et al. Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition. Nanoscale, 2017, 9, 3561.
[39] Jingzhao Zhang, Wenjing Zhao and Junyi Zhu. Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: algorithm, hydrogen passivation, and temperature effects. Nanoscale, 2018, 10, 17683
[40] Sharma, S., Kalita, G., Vishwakarma, R. et al. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Sci Rep 5, 10426 (2015).
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2022-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明