博碩士論文 105282602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:52.14.213.73
姓名 艾約翰(John Andrew C. Albay)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Stochastic thermodynamics of colloidal heat engines)
相關論文
★ 等溫過程中平衡捷徑之實驗研究★ 蜂擁菌群中被動粒子統計特性之實驗研究
★ 布朗粒子的自發性熱機★ 研究在擁擠環境中由多個驅動蛋白拖曳的貨物速度
★ 長鏈被動粒子浸於主動群泳菌落的結構動力學★ Impact of Individual Variants in Cell Lengths on the Dynamics of Bacterial Swarming
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱機的發展和熱力學的研究在 19 世紀齊頭並進。卡諾對理想熱機的研究已成為測量其他熱機效率的基準。在過去的二十年裡,由於微型化技術以及理解隨機系統理論的進步,``微觀′′熱機的熱力學引起了更多的關注。在相關的主題中,我們專注於提高熱機的性能,例如效率和功率。

此論文涵蓋三個部分:i)如何架設具有回饋控制的光鑷系統,ii)展示膠體布朗粒子運動的熱機,以及iii)對於在有限時間內瞬間抵達平衡態的研究。

為了能夠控制單一布朗粒子的擾動,我們開發了一種能夠操縱位能和調節溫度的裝置。具有探測精準位置以及超快速回饋控制的光鑷(OFT),可以產生客製形狀且與時相關的位能,並能精確控制等效溫度。OFT 創建了一個虛擬系統來模擬布朗運動的粒子被限制在真實溫度下的現實位能內 [Albay et al., Opt. Exp. (2018), Albay et al., Sci. Rep. (2021)]。為了展示 OFT 研究熱力學問題的便利性,我們研究布朗粒子的非平衡動力學,該粒子被限制在剛度線性變化的諧位能中,並驗證了 Crooks 的漲落定理 [Albay et al., Opt. Exp. (2018)]。

憑藉 OFT 的優勢,最明顯的應用是熱機的演示。我們實現了一個微型史特林熱機,該熱機由一個布朗粒子組成,該粒子受到時變諧位能的限制並可以週期性地控制溫度。該熱機的效率可以在準靜態極限處達到熱力學極限,並顯示其在效率和功率之間的權衡關係 [Albay et al., Sci. Rep. (2018)]。此外,相較於熱浴中的熱機,細菌浴接觸的熱機較其效率高且以此聞名,但其原因不明。我們採用 Ornstein-Ulehnbeck 噪聲來模擬細菌對粒子擾動的影響,並顯示效率可以藉著調整對於給定噪聲關聯時間的噪聲大小而改變,則發動機的效率可以在準靜態極限超過被動熱浴發動機的效率 [Albay et al., Submitted (2022)]。

對於發動機的這兩種情況,功率在最大效率下都可以忽略不計。下一個挑戰是開發一種在最大效率下具有有限功率的發動機。為了實現有限速率轉變,我們通過對控制參數施加適當的約束來實現保持瞬時平衡的等溫過程捷徑。我們考慮三種不同的情況:第一種是布朗粒子被諧位能移動到不同的位置,第二種是改變諧位能的剛度,第三種是改變非和諧位能的剛度。我們確認在轉變後系統立即達到平衡狀態,並發現在所有三種情況下耗散功都與驅動時間成反比,這表明瞬時轉變是不可能的 [Albay et al., Phys. Rev. Res. (2019), Albay et al., Appl. Phys. Lett. (2020)]。最後,我們確立出一個新的作功關係式,即正向過程中瞬時轉變的耗散功與相應的逆向過程相同 [Albay et al., New J. Phys. (2020)]。
摘要(英) The development of heat engines and the study of thermodynamics went hand in hand in the 19th century.
Carnot′s study of an ideal engine has served as a benchmark for measuring the efficiency of other heat engines.
Over the past two decades, the thermodynamics of ``microscopic′′ heat engines has attracted more attention due to technological advances in miniaturization and theoretical advancements in understanding stochastic systems.
Among other relevant topics, we focus on enhancing the performance of heat engines, such as efficiency and power.

This thesis consists of three parts: i) the development of the optical feedback trap, ii) the demonstration of colloidal heat engines, and iii) the study of the instantaneous equilibrium transition in finite time.

To control the fluctuation of a single Brownian particle, we develop a device capable of manipulating potentials and regulating temperature.
The optical feedback trap (OFT), which is based on precise position detection and ultrafast feedback control, can create a time-dependent potential with any desired shape and precisely control the effective temperature.
The OFT creates a virtual system that mimics the environment of a Brownian particle confined in a real potential at a real temperature [Albay et al., Opt. Exp. (2018), Albay et al., Sci. Rep. (2021)].

To display the ease of the OFT to study thermodynamic problems, we study the nonequilibrium dynamics of a Brownian particle confined in a harmonic potential where the stiffness varies linearly and verify the Crooks fluctuation theorem [Albay et al., Opt. Exp. (2018)].

With the advantages of the OFT, the most apparent application is the demonstration of heat engines.
We realize a microscopic Stirling heat engine consisting of a Brownian particle confined by a time-varying harmonic potential and periodically controlling temperature.
The engine′s efficiency can reach the thermodynamic bound of efficiency at the quasistatic limit and displays the trade-off relation between its efficiency and power [Albay et al., Sci. Rep. (2018)].

Moreover, the heat engine in contact with the bacterial bath is known for the higher efficiency than the engine efficiency in the thermal bath, but its origin is unknown.
We adopt the Ornstein-Ulehnbeck noise to mimic the bacterial effect on a particle′s fluctuation and show that the efficiency can be modulated by tuning the strength of noise at the given correlation time of noise.
If the noise level is tuned according to the harmonic potential′s stiffness, the engine′s efficiency can surpass that of a passive bath heat engine in the quasistatic limit [Albay et al., Submitted (2022)].

For both cases of the engine, power is negligible at the maximum efficiency.
The next challenge is developing an engine having finite power at maximum efficiency.
To achieve a finite-rate transition, we implement the shortcut-to-isothermality protocol to maintain instantaneous equilibrium by imposing the appropriate constraints on the control parameter.
We consider three different cases: the first is a Brownian particle dragged to a different position by a harmonic potential, the second is the change in stiffness of the harmonic potential, and the third is the change in stiffness of a nonharmonic potential.
We confirm that the equilibrium state is achieved immediately after transition and found that the dissipated work is inversely proportional to the driving time in all three cases, indicating that an instantaneous transition is impossible [Albay et al., Phys. Rev. Res. (2019), Albay et al., Appl. Phys. Lett. (2020)].

Finally, we confirm a new work relation stating that the dissipated work of the instantaneous transition of the forward process is identical to that of the corresponding reverse process [Albay et al., New J. Phys. (2020)].
關鍵字(中) ★ 隨機熱力學
★ 熱機
★ 膠體
★ 反饋陷阱
關鍵字(英) ★ Stochastic Thermodynamics
★ Heat engine
★ Colloid
★ Feedback trap
論文目次 摘要.........ix
Abstract.........xi
Acknowledgements.........xiii
1 Introduction.........1
1.1 Why Stochastic heat engine?.........1
2 Stochastic Thermodynamics.........7
2.1 Classical thermodynamics to Stochastic thermodynamics.........7
2.2 Langevin equation.........9
2.3 Stochastic calculus.........13
2.4 Sekimoto’s approach.........14
2.4.1 Work and heat in microscopic scale.........14
2.5 Entropy in stochastic system.........16
2.6 Fluctuation Theorem.........16
2.6.1 Crook’s fluctuation theorem.........17
2.6.2 Jarzynski relation.........18
3 Optical tweezers.........19
3.1 Optical trapping regime.........20
3.1.1 Ray optics regime: r ≫ λ.........20
3.1.2 Rayleigh regime: r ≪ λ.........22
3.1.3 Ray scattering regime: r ∼ λ.........22
3.2 Designing the Optical tweezers.........23
3.2.1 Laser.........23
3.2.2 Microscope.........24
3.2.3 Position control.........25
3.2.4 Position detection.........26
3.2.5 Acquisition hardware.........27
3.3 Building of optical tweezers.........28
3.4 Calibration of Optical tweezers.........31
3.4.1 Determination of conversion factors.........31
3.4.1.1 Camera Image.........31
3.4.1.2 AOD calibration.........32
3.4.2 Stiffness calibration.........33
3.4.2.1 Power spectrum analysis.........33
3.4.2.2 Equipartition theorem.........34
4 Optical Feedback trap.........37
4.1 Concept of Feedback.........37
4.2 Generation of virtual potential.........39
4.2.1 Breathing potential experiment.........42
4.2.2 Double well potential.........44
4.3 Generation of virtual Temperature.........46
5 Heat engine in colloidal system.........51
5.1 Thermodynamic processes.........52
5.1.1 Iso-temperature process.........52
5.1.2 Iso-stiffness process.........53
5.2 A microscopic Stirling engine.........55
6 Active bath heat engine.........65
6.1 Creation of correlated noise.........66
6.2 OU noise as non-equilibrium temperature.........67
6.3 Constant Tou active bath heat engine.........67
6.4 Comparison of Active bath heat engine and Passive bath heat engine.........70
7 Instantaneous equilibrium process.........77
7.1 Shortcut to Isothermality (ScI).........78
7.2 Experimental validation of ScI.........79
7.2.1 Brownian harmonic transport.........80
7.2.2 Time-varying harmonic potential (HP).........84
7.2.3 Time-varying non-harmonic potential (NHP).........86
7.3 Derivation of the Work Relation for the ScI processes: ⟨W⟩ = ⟨WR⟩ + 2∆F.........89
8 Conclusion.........93
A Lens basics.........95
B Distributions of thermodnamic quantities in long time limit.........99
Bibliography .........101
參考文獻 1. Einstein, A. Autobiographical notes. In, PA Schilpp. Albert Einstein: Philosopher Scientist 1, 3–94 (1949).
2. Ford, I. Statistical Physics: an entropic approach (John Wiley & Sons, 2013).
3. Haddad, W. M., Chellaboina, V. & Hui, Q. in Nonnegative and Compartmental Dynamical Systems (Princeton University Press, 2010).
4. Haddad, W., Hou, S., Bailey, J. & Meskin, N. in Control of Complex Systems 93–162 (Elsevier, 2016).
5. Hou, S. P., Haddad, W. M., Meskin, N. & Bailey, J. M. A Mechanistic neural mean field theory of how anesthesia suppresses consciousness: Synaptic drive dynamics, system stability, bifurcations, and attractors in 2015 54th IEEE Con ference on Decision and Control (CDC) (2015), 2549–2554.
6. Piraján, J. C. M. Thermodynamics: Physical Chemistry of Aqueous Systems (BoD–Books on Demand, 2011).
7. Nernst, W. Experimental and theoretical applications of thermodynamics to chemistry (C. Scribner’s sons, 1907).
8. Svirezhev, Y. M. Thermodynamics and ecology. Ecological Modelling 132, 11– 22 (2000).
9. Tsatsaronis, G. & Valero, A. Thermodynamics meets economics. Mechanical Engineering 111, 84 (1989).
10. Glucina, M. D. & Mayumi, K. Connecting thermodynamics and economics: Well-lit roads and burned bridges. Annals of the New York Academy of Sciences 1185, 11–29 (2010).
11. Eastop, T. D. & Mc Conkey, A. Applied Thermodynamics for engineering technologies (1986).
12. Maxwell, J. Life and Scientific Work of Peter Guthrie Tait 1911.
13. Szilard, L. Über die Entropieverminderung in einem thermodynamischen Sys tem bei Eingriffen intelligenter Wesen. Zeitschrift für Physik 53, 840–856 (1929).
14. Smoluchowski, M. Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene. Pisma Mariana Smoluchowskiego 2, 226–251 (1927).
15. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman lectures on physics, Vol. I: The new millennium edition: mainly mechanics, radiation, and heat (Basic books, 2011).
16. Brillouin, L. Maxwell’s demon cannot operate: Information and entropy. I. Journal of Applied Physics 22, 334–337 (1951).
17. Gabor, D. in Progress in optics 109–153 (Elsevier, 1961).
18. Cottet, N. et al. Observing a quantum Maxwell demon at work. Proceedings of the National Academy of Sciences 114, 7561–7564 (2017).
19. Vidrighin, M. D. et al. Photonic Maxwell’s demon. Physical review letters 116, 050401 (2016).
20. Howard, J. & Clark, R. Mechanics of motor proteins and the cytoskeleton. Appl. Mech. Rev. 55, B39–B39 (2002).
21. Glagolev, A. & Skulachev, V. The proton pump is a molecular engine of motile bacteria. Nature 272, 280–282 (1978).
22. Nirody, J. A., Sun, Y.-R. & Lo, C.-J. The biophysicist’s guide to the bacterial flagellar motor. Advances in Physics: X 2, 324–343 (2017).
23. Yasuda, R., Noji, H., Kinosita Jr, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps. Cell 93, 1117– 1124 (1998).
24. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).
25. Nudler, E. RNA polymerase active center: the molecular engine of transcrip tion. Annual review of biochemistry 78, 335–361 (2009).
26. Hamilton, S. C., Farchaus, J. W. & Davis, M. C. DNA polymerases as engines for biotechnology. Biotechniques 31, 370–383 (2001).
27. Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. arXiv preprint cond-mat/0511629 (2005).
28. Ashkin, A. & Dziedzic, J. Optical levitation by radiation pressure. Applied Physics Letters 19, 283–285 (1971).
29. Grier, D. G. A revolution in optical manipulation. nature 424, 810–816 (2003).
30. Ajdari, A. & Prost, J. Drift induced by a spatially periodic potential of low symmetry: Pulsed dielectrophoresis. in (1992).
31. Chauwin, J.-F., Ajdari, A & Prost, J. Force-free motion in asymmetric struc tures: a mechanism without diffusive steps. EPL (Europhysics Letters) 27, 421 (1994).
32. Reimann, P. Current reversal in a white noise driven flashing ratchet. Physics Reports 290, 149–155 (1997).
33. Makhnovskii, Y. A., Rozenbaum, V., Yang, D.-Y., Lin, S. & Tsong, T. Flashing ratchet model with high efficiency. Physical Review E 69, 021102 (2004).
34. Ait-Haddou, R & Herzog, W. Force and motion generation of myosin motors: muscle contraction. Journal of Electromyography and Kinesiology 12, 435–445 (2002).
35. Dangkulwanich, M. et al. Complete dissection of transcription elongation re veals slow translocation of RNA polymerase II in a linear ratchet mechanism. Elife 2, e00971 (2013).
36. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solv able model for stochastic heat engines. EPL (Europhysics Letters) 81, 20003 (2007).
37. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Physics 8, 143–146 (2012).
38. Martínez, I. A. et al. Brownian carnot engine. Nature physics 12, 67–70 (2016).
39. Curzon, F. L. & Ahlborn, B. Efficiency of a Carnot engine at maximum power output. American Journal of Physics 43, 22–24 (1975).
40. Tu, Z. Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity. Physical Review E 89, 052148 (2014).
41. Deng, J., Wang, Q.-h., Liu, Z., Hänggi, P. & Gong, J. Boosting work char acteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Physical Review E 88, 062122 (2013).
42. Abah, O. & Lutz, E. Performance of shortcut-to-adiabaticity quantum engines. Physical Review E 98, 032121 (2018).
43. Pancotti, N., Scandi, M., Mitchison, M. T. & Perarnau-Llobet, M. Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling. Physical Review X 10, 031015 (2020).
44. Nakamura, K., Matrasulov, J. & Izumida, Y. Fast-forward approach to stochas tic heat engine. Physical Review E 102, 012129 (2020).
45. Krishnamurthy, S., Ghosh, S., Chatterji, D., Ganapathy, R. & Sood, A. A micrometre-sized heat engine operating between bacterial reservoirs. Nature Physics 12, 1134–1138 (2016).
46. Lee, J. S., Park, J.-M. & Park, H. Brownian heat engine with active reservoirs. Physical Review E 102, 032116 (2020).
47. Kumari, A., Pal, P., Saha, A. & Lahiri, S. Stochastic heat engine using an active particle. Physical Review E 101, 032109 (2020).
48. Ekeh, T., Cates, M. E. & Fodor, É. Thermodynamic cycles with active matter. Physical Review E 102, 010101 (2020).
49. Pietzonka, P., Fodor, É., Lohrmann, C., Cates, M. E. & Seifert, U. Autonomous engines driven by active matter: Energetics and design principles. Physical Re view X 9, 041032 (2019).
50. Saslow, W. M. A history of thermodynamics: the missing manual. Entropy 22, 77 (2020).
51. Einstein, A. et al. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat.
52. Sutherland, W. LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. The London, Edinburgh, and Dublin Philosoph ical Magazine and Journal of Science 9, 781–785 (1905).
53. Von Smoluchowski, M. Zur kinetischen theorie der brownschen molekularbe wegung und der suspensionen. Annalen der physik 326, 756–780 (1906).
54. Perrin, J. Mouvement brownien et réalité moléculaire (1909).
55. Bian, X., Kim, C. & Karniadakis, G. E. 111 years of Brownian motion. Soft Matter 12, 6331–6346 (2016).
56. Langevin, P. Sur la théorie du mouvement brownien. Compt. Rendus 146, 530– 533 (1908).
57. Lemons, D. S. & Gythiel, A. Paul langevin’s 1908 paper “on the theory of brownian motion”[“sur la théorie du mouvement brownien,”cr acad. sci.(paris) 146, 530–533 (1908)]. American Journal of Physics 65, 1079–1081 (1997).
58. Itô, K. 109. stochastic integral. Proceedings of the Imperial Academy 20, 519– 524 (1944).
59. Stratonovich, R. A new representation for stochastic integrals and equations. SIAM Journal on Control 4, 362–371 (1966).
60. Gardiner, C. W. et al. Handbook of stochastic methods (springer Berlin, 1985).
61. Smythe, J., Moss, F., McClintock, P. V. & Clarkson, D. Ito versus Stratonovich revisited. Physics Letters A 97, 95–98 (1983).
62. Mannella, R. & McClintock, P. V. Itô versus Stratonovich: 30 years later. The Random and Fluctuating World: Celebrating Two Decades of Fluctuation and Noise Letters, 9–18 (2022).
63. Sekimoto, K. Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement 130, 17–27 (1998).
64. Crooks, G. E. Nonequilibrium measurements of free energy differences for mi croscopically reversible Markovian systems. Journal of Statistical Physics 90, 1481–1487 (1998).
65. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physical Review E 60, 2721 (1999).
66. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).
67. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measure ments: A master-equation approach. Physical Review E 56, 5018 (1997).
68. Jarzynski, C. Nonequilibrium equality for free energy differences. Physical Re view Letters 78, 2690 (1997).
69. Poynting, J. H. XV. On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society of London, 343–361 (1884).
70. Lebedev, P. Experimental examination of light pressure. Nuovo Cimento 15, 195 (1883).
71. Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Physical Review (Series I) 13, 307 (1901).
72. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Physical Review 50, 115 (1936).
73. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys ical review letters 24, 156 (1970).
74. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single beam gradient force optical trap for dielectric particles. Optics letters 11, 288– 290 (1986).
75. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annual review of biophysics and biomolecular structure 23, 247–285 (1994).
76. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam opti cal traps with nanometer-resolution position sensing. IEEE journal of selected topics in quantum electronics 2, 1066–1076 (1996).
77. Visscher, K. & Block, S. M. in Methods in enzymology 460–489 (Academic Press, 1998).
78. Molloy, J. E. Optical chopsticks: digital synthesis of multiple optical traps. Methods in cell biology 55, 205–216 (1997).
79. Molloy, J. E. & Padgett, M. J. Lights, action: optical tweezers. Contemporary physics 43, 241–258 (2002).
80. Brouhard, G. J., Schek, H. T. & Hunt, A. J. Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Transactions on Biomed ical Engineering 50, 121–125 (2003).
81. Sheetz, M. P. Methods in cell biology (Academic Press, 1998).
82. Block, S. Optical tweezers: a new tool for biophysics. Noninvasive techniques in cell biology (1990).
83. Rice, S. E., Purcell, T. J. & Spudich, J. A. in Methods in enzymology 112–133 (Elsevier, 2003).
84. Smith, S. B., Cui, Y. & Bustamante, C. in Methods in enzymology 134–162 (Elsevier, 2003).
85. Block, S. M. Construction of optical tweezers. Cells: a laboratory manual 2, 81–1 (1998).
86. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two dimensional optical force clamp for single molecule studies. Biophysical journal 83, 491–501 (2002).
87. Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Applied Optics 36, 2107–2113 (1997).
88. Gieseler, J. et al. Optical tweezers—from calibration to applications: a tutorial. Advances in Optics and Photonics 13, 74–241 (2021).
89. Pesce, G., Jones, P. H., Maragò, O. M. & Volpe, G. Optical tweezers: theory and practice. The European Physical Journal Plus 135, 1–38 (2020).
90. Pesce, G. et al. Step-by-step guide to the realization of advanced optical tweez ers. JOSA B 32, B84–B98 (2015).
91. Gieseler, J. et al. Optical tweezers: A comprehensive tutorial from calibration to applications. arXiv preprint arXiv:2004.05246 (2020).
92. Jones, P., Maragó, O. & Volpe, G. Optical tweezers (Cambridge University Press Cambridge, 2015).
93. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical journal 61, 569–582 (1992).
94. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Reports on Progress in Physics 76, 026401 (2013).
95. Neuman, K. C. & Block, S. M. Optical trapping. Review of scientific instru ments 75, 2787–2809 (2004).
96. Ferrer Ortas, J. Dynamic optical tweezers using acousto-optic modulators (2015).
97. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displace ment detection in optical tweezers. Optics letters 23, 7–9 (1998).
98. Trepagnier, E. et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proceedings of the National Academy of Sciences 101, 15038–15041 (2004).
99. Bérut, A. et al. Experimental verification of Landauer’s principle linking in formation and thermodynamics. Nature 483, 187–189 (2012).
100. Simon, A. & Libchaber, A. Escape and synchronization of a Brownian particle. Physical review letters 68, 3375 (1992).
101. McCann, L. I., Dykman, M. & Golding, B. Thermally activated transitions in a bistable three-dimensional optical trap. Nature 402, 785–787 (1999).
102. Cohen, A. E. & Moerner, W. E. The anti-Brownian electrophoretic trap (ABEL trap): fabrication and software in Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III 5699 (2005), 296– 305.
103. Cohen, A. E. & Moerner, W. Method for trapping and manipulating nanoscale objects in solution. Applied physics letters 86, 093109 (2005).
104. Bechhoefer, J. Feedback for physicists: A tutorial essay on control. Reviews of modern physics 77, 783 (2005).
105. Gray, M. B., McClelland, D. E., Barton, M. & Kawamura, S. A simple high sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer. Optical and Quantum Electronics 31, 571–582 (1999).
106. Cohen, A. E. Control of nanoparticles with arbitrary two-dimensional force fields. Physical review letters 94, 118102 (2005).
107. Jun, Y., Gavrilov, M. & Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Physical review letters 113, 190601 (2014).
108. Wallin, A. E., Ojala, H., Hæggström, E. & Tuma, R. Stiffer optical tweezers through real-time feedback control. Applied Physics Letters 92, 224104 (2008).
109. Ojala, H. et al. Stiffer optical tweezers through real-time feedback control (2007).
110. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Reviews of modern physics 62, 251 (1990).
111. Roldán, É., Martínez, I. A., Dinis, L. & Rica, R. A. Measuring kinetic energy changes in the mesoscale with low acquisition rates. Applied physics letters 104, 234103 (2014).
112. Crooks, G. E. & Jarzynski, C. Work distribution for the adiabatic compression of a dilute and interacting classical gas. Physical Review E 75, 021116 (2007).
113. Zakine, R., Solon, A., Gingrich, T. & Van Wijland, F. Stochastic Stirling engine operating in contact with active baths. Entropy 19, 193 (2017).
114. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solv able model for stochastic heat engines. Europhysics Letters 81 (2008).
115. Esposito, M., Kawai, R., Lindenberg, K. & Van den Broeck, C. Efficiency at maximum power of low-dissipation Carnot engines. Physical review letters 105, 150603 (2010).
116. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).
117. Di Leonardo, R. et al. Bacterial ratchet motors. Proceedings of the National Academy of Sciences 107, 9541–9545 (2010).
118. Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angewandte Chemie International Edition 41, 652–654 (2002).
119. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society 126, 13424–13431 (2004).
120. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Physical review letters 99, 048102 (2007).
121. Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostruc tured propellers. Nano letters 9, 2243–2245 (2009).
122. Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Physical review letters 105, 268302 (2010).
123. Holubec, V. & Marathe, R. Underdamped active Brownian heat engine. Phys ical Review E 102, 060101 (2020).
124. Gronchi, G. & Puglisi, A. Optimization of an active heat engine. Physical Re view E 103, 052134 (2021).
125. Chen, X. & Muga, J. G. Transient energy excitation in shortcuts to adiabatic ity for the time-dependent harmonic oscillator. Physical Review A 82, 053403 (2010).
126. Martínez, I. A., Petrosyan, A., Guéry-Odelin, D., Trizac, E. & Ciliberto, S. Engineered swift equilibration of a Brownian particle. Nature physics 12, 843– 846 (2016).
127. Li, G., Quan, H. T. & Tu, Z. C. Shortcuts to isothermality and nonequilibrium work relations. Phys. Rev. E 96, 012144. issn: 2470-0045. http://link.aps. org/doi/10.1103/PhysRevE.96.012144 (2017).
128. Kwon, C., Noh, J. D. & Park, H. Work fluctuations in a time-dependent har monic potential: Rigorous results beyond the overdamped limit. Physical Re view E 88, 062102 (2013).
129. Landauer, R. Motion out of noisy states. Journal of statistical physics 53, 233– 248 (1988).
130. Cedraschi, P. & Büttiker, M. Zero-point fluctuations in the ground state of a mesoscopic normal ring. Physical Review B 63, 165312 (2001).
131. Gomez-Solano, J. R. Work extraction and performance of colloidal heat engines in viscoelastic baths. 50 years of Statistical Physics in Mexico: Development, State of the Art and Perspectives (2021).
132. Fodor, É., Kanazawa, K., Hayakawa, H., Visco, P. & Van Wijland, F. Energet ics of active fluctuations in living cells. Physical Review E 90, 042724 (2014).
133. Plata, C. A., Guéry-Odelin, D., Trizac, E. & Prados, A. Building an irreversible Carnot-like heat engine with an overdamped harmonic oscillator. Journal of Statistical Mechanics: Theory and Experiment 2020, 093207 (2020)
指導教授 田溶根(Yonggun Jun) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明