參考文獻 |
1. Einstein, A. Autobiographical notes. In, PA Schilpp. Albert Einstein: Philosopher Scientist 1, 3–94 (1949).
2. Ford, I. Statistical Physics: an entropic approach (John Wiley & Sons, 2013).
3. Haddad, W. M., Chellaboina, V. & Hui, Q. in Nonnegative and Compartmental Dynamical Systems (Princeton University Press, 2010).
4. Haddad, W., Hou, S., Bailey, J. & Meskin, N. in Control of Complex Systems 93–162 (Elsevier, 2016).
5. Hou, S. P., Haddad, W. M., Meskin, N. & Bailey, J. M. A Mechanistic neural mean field theory of how anesthesia suppresses consciousness: Synaptic drive dynamics, system stability, bifurcations, and attractors in 2015 54th IEEE Con ference on Decision and Control (CDC) (2015), 2549–2554.
6. Piraján, J. C. M. Thermodynamics: Physical Chemistry of Aqueous Systems (BoD–Books on Demand, 2011).
7. Nernst, W. Experimental and theoretical applications of thermodynamics to chemistry (C. Scribner’s sons, 1907).
8. Svirezhev, Y. M. Thermodynamics and ecology. Ecological Modelling 132, 11– 22 (2000).
9. Tsatsaronis, G. & Valero, A. Thermodynamics meets economics. Mechanical Engineering 111, 84 (1989).
10. Glucina, M. D. & Mayumi, K. Connecting thermodynamics and economics: Well-lit roads and burned bridges. Annals of the New York Academy of Sciences 1185, 11–29 (2010).
11. Eastop, T. D. & Mc Conkey, A. Applied Thermodynamics for engineering technologies (1986).
12. Maxwell, J. Life and Scientific Work of Peter Guthrie Tait 1911.
13. Szilard, L. Über die Entropieverminderung in einem thermodynamischen Sys tem bei Eingriffen intelligenter Wesen. Zeitschrift für Physik 53, 840–856 (1929).
14. Smoluchowski, M. Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene. Pisma Mariana Smoluchowskiego 2, 226–251 (1927).
15. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman lectures on physics, Vol. I: The new millennium edition: mainly mechanics, radiation, and heat (Basic books, 2011).
16. Brillouin, L. Maxwell’s demon cannot operate: Information and entropy. I. Journal of Applied Physics 22, 334–337 (1951).
17. Gabor, D. in Progress in optics 109–153 (Elsevier, 1961).
18. Cottet, N. et al. Observing a quantum Maxwell demon at work. Proceedings of the National Academy of Sciences 114, 7561–7564 (2017).
19. Vidrighin, M. D. et al. Photonic Maxwell’s demon. Physical review letters 116, 050401 (2016).
20. Howard, J. & Clark, R. Mechanics of motor proteins and the cytoskeleton. Appl. Mech. Rev. 55, B39–B39 (2002).
21. Glagolev, A. & Skulachev, V. The proton pump is a molecular engine of motile bacteria. Nature 272, 280–282 (1978).
22. Nirody, J. A., Sun, Y.-R. & Lo, C.-J. The biophysicist’s guide to the bacterial flagellar motor. Advances in Physics: X 2, 324–343 (2017).
23. Yasuda, R., Noji, H., Kinosita Jr, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps. Cell 93, 1117– 1124 (1998).
24. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).
25. Nudler, E. RNA polymerase active center: the molecular engine of transcrip tion. Annual review of biochemistry 78, 335–361 (2009).
26. Hamilton, S. C., Farchaus, J. W. & Davis, M. C. DNA polymerases as engines for biotechnology. Biotechniques 31, 370–383 (2001).
27. Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. arXiv preprint cond-mat/0511629 (2005).
28. Ashkin, A. & Dziedzic, J. Optical levitation by radiation pressure. Applied Physics Letters 19, 283–285 (1971).
29. Grier, D. G. A revolution in optical manipulation. nature 424, 810–816 (2003).
30. Ajdari, A. & Prost, J. Drift induced by a spatially periodic potential of low symmetry: Pulsed dielectrophoresis. in (1992).
31. Chauwin, J.-F., Ajdari, A & Prost, J. Force-free motion in asymmetric struc tures: a mechanism without diffusive steps. EPL (Europhysics Letters) 27, 421 (1994).
32. Reimann, P. Current reversal in a white noise driven flashing ratchet. Physics Reports 290, 149–155 (1997).
33. Makhnovskii, Y. A., Rozenbaum, V., Yang, D.-Y., Lin, S. & Tsong, T. Flashing ratchet model with high efficiency. Physical Review E 69, 021102 (2004).
34. Ait-Haddou, R & Herzog, W. Force and motion generation of myosin motors: muscle contraction. Journal of Electromyography and Kinesiology 12, 435–445 (2002).
35. Dangkulwanich, M. et al. Complete dissection of transcription elongation re veals slow translocation of RNA polymerase II in a linear ratchet mechanism. Elife 2, e00971 (2013).
36. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solv able model for stochastic heat engines. EPL (Europhysics Letters) 81, 20003 (2007).
37. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Physics 8, 143–146 (2012).
38. Martínez, I. A. et al. Brownian carnot engine. Nature physics 12, 67–70 (2016).
39. Curzon, F. L. & Ahlborn, B. Efficiency of a Carnot engine at maximum power output. American Journal of Physics 43, 22–24 (1975).
40. Tu, Z. Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity. Physical Review E 89, 052148 (2014).
41. Deng, J., Wang, Q.-h., Liu, Z., Hänggi, P. & Gong, J. Boosting work char acteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Physical Review E 88, 062122 (2013).
42. Abah, O. & Lutz, E. Performance of shortcut-to-adiabaticity quantum engines. Physical Review E 98, 032121 (2018).
43. Pancotti, N., Scandi, M., Mitchison, M. T. & Perarnau-Llobet, M. Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling. Physical Review X 10, 031015 (2020).
44. Nakamura, K., Matrasulov, J. & Izumida, Y. Fast-forward approach to stochas tic heat engine. Physical Review E 102, 012129 (2020).
45. Krishnamurthy, S., Ghosh, S., Chatterji, D., Ganapathy, R. & Sood, A. A micrometre-sized heat engine operating between bacterial reservoirs. Nature Physics 12, 1134–1138 (2016).
46. Lee, J. S., Park, J.-M. & Park, H. Brownian heat engine with active reservoirs. Physical Review E 102, 032116 (2020).
47. Kumari, A., Pal, P., Saha, A. & Lahiri, S. Stochastic heat engine using an active particle. Physical Review E 101, 032109 (2020).
48. Ekeh, T., Cates, M. E. & Fodor, É. Thermodynamic cycles with active matter. Physical Review E 102, 010101 (2020).
49. Pietzonka, P., Fodor, É., Lohrmann, C., Cates, M. E. & Seifert, U. Autonomous engines driven by active matter: Energetics and design principles. Physical Re view X 9, 041032 (2019).
50. Saslow, W. M. A history of thermodynamics: the missing manual. Entropy 22, 77 (2020).
51. Einstein, A. et al. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat.
52. Sutherland, W. LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. The London, Edinburgh, and Dublin Philosoph ical Magazine and Journal of Science 9, 781–785 (1905).
53. Von Smoluchowski, M. Zur kinetischen theorie der brownschen molekularbe wegung und der suspensionen. Annalen der physik 326, 756–780 (1906).
54. Perrin, J. Mouvement brownien et réalité moléculaire (1909).
55. Bian, X., Kim, C. & Karniadakis, G. E. 111 years of Brownian motion. Soft Matter 12, 6331–6346 (2016).
56. Langevin, P. Sur la théorie du mouvement brownien. Compt. Rendus 146, 530– 533 (1908).
57. Lemons, D. S. & Gythiel, A. Paul langevin’s 1908 paper “on the theory of brownian motion”[“sur la théorie du mouvement brownien,”cr acad. sci.(paris) 146, 530–533 (1908)]. American Journal of Physics 65, 1079–1081 (1997).
58. Itô, K. 109. stochastic integral. Proceedings of the Imperial Academy 20, 519– 524 (1944).
59. Stratonovich, R. A new representation for stochastic integrals and equations. SIAM Journal on Control 4, 362–371 (1966).
60. Gardiner, C. W. et al. Handbook of stochastic methods (springer Berlin, 1985).
61. Smythe, J., Moss, F., McClintock, P. V. & Clarkson, D. Ito versus Stratonovich revisited. Physics Letters A 97, 95–98 (1983).
62. Mannella, R. & McClintock, P. V. Itô versus Stratonovich: 30 years later. The Random and Fluctuating World: Celebrating Two Decades of Fluctuation and Noise Letters, 9–18 (2022).
63. Sekimoto, K. Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement 130, 17–27 (1998).
64. Crooks, G. E. Nonequilibrium measurements of free energy differences for mi croscopically reversible Markovian systems. Journal of Statistical Physics 90, 1481–1487 (1998).
65. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physical Review E 60, 2721 (1999).
66. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).
67. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measure ments: A master-equation approach. Physical Review E 56, 5018 (1997).
68. Jarzynski, C. Nonequilibrium equality for free energy differences. Physical Re view Letters 78, 2690 (1997).
69. Poynting, J. H. XV. On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society of London, 343–361 (1884).
70. Lebedev, P. Experimental examination of light pressure. Nuovo Cimento 15, 195 (1883).
71. Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Physical Review (Series I) 13, 307 (1901).
72. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Physical Review 50, 115 (1936).
73. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys ical review letters 24, 156 (1970).
74. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single beam gradient force optical trap for dielectric particles. Optics letters 11, 288– 290 (1986).
75. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annual review of biophysics and biomolecular structure 23, 247–285 (1994).
76. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam opti cal traps with nanometer-resolution position sensing. IEEE journal of selected topics in quantum electronics 2, 1066–1076 (1996).
77. Visscher, K. & Block, S. M. in Methods in enzymology 460–489 (Academic Press, 1998).
78. Molloy, J. E. Optical chopsticks: digital synthesis of multiple optical traps. Methods in cell biology 55, 205–216 (1997).
79. Molloy, J. E. & Padgett, M. J. Lights, action: optical tweezers. Contemporary physics 43, 241–258 (2002).
80. Brouhard, G. J., Schek, H. T. & Hunt, A. J. Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Transactions on Biomed ical Engineering 50, 121–125 (2003).
81. Sheetz, M. P. Methods in cell biology (Academic Press, 1998).
82. Block, S. Optical tweezers: a new tool for biophysics. Noninvasive techniques in cell biology (1990).
83. Rice, S. E., Purcell, T. J. & Spudich, J. A. in Methods in enzymology 112–133 (Elsevier, 2003).
84. Smith, S. B., Cui, Y. & Bustamante, C. in Methods in enzymology 134–162 (Elsevier, 2003).
85. Block, S. M. Construction of optical tweezers. Cells: a laboratory manual 2, 81–1 (1998).
86. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two dimensional optical force clamp for single molecule studies. Biophysical journal 83, 491–501 (2002).
87. Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Applied Optics 36, 2107–2113 (1997).
88. Gieseler, J. et al. Optical tweezers—from calibration to applications: a tutorial. Advances in Optics and Photonics 13, 74–241 (2021).
89. Pesce, G., Jones, P. H., Maragò, O. M. & Volpe, G. Optical tweezers: theory and practice. The European Physical Journal Plus 135, 1–38 (2020).
90. Pesce, G. et al. Step-by-step guide to the realization of advanced optical tweez ers. JOSA B 32, B84–B98 (2015).
91. Gieseler, J. et al. Optical tweezers: A comprehensive tutorial from calibration to applications. arXiv preprint arXiv:2004.05246 (2020).
92. Jones, P., Maragó, O. & Volpe, G. Optical tweezers (Cambridge University Press Cambridge, 2015).
93. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical journal 61, 569–582 (1992).
94. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Reports on Progress in Physics 76, 026401 (2013).
95. Neuman, K. C. & Block, S. M. Optical trapping. Review of scientific instru ments 75, 2787–2809 (2004).
96. Ferrer Ortas, J. Dynamic optical tweezers using acousto-optic modulators (2015).
97. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displace ment detection in optical tweezers. Optics letters 23, 7–9 (1998).
98. Trepagnier, E. et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proceedings of the National Academy of Sciences 101, 15038–15041 (2004).
99. Bérut, A. et al. Experimental verification of Landauer’s principle linking in formation and thermodynamics. Nature 483, 187–189 (2012).
100. Simon, A. & Libchaber, A. Escape and synchronization of a Brownian particle. Physical review letters 68, 3375 (1992).
101. McCann, L. I., Dykman, M. & Golding, B. Thermally activated transitions in a bistable three-dimensional optical trap. Nature 402, 785–787 (1999).
102. Cohen, A. E. & Moerner, W. E. The anti-Brownian electrophoretic trap (ABEL trap): fabrication and software in Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III 5699 (2005), 296– 305.
103. Cohen, A. E. & Moerner, W. Method for trapping and manipulating nanoscale objects in solution. Applied physics letters 86, 093109 (2005).
104. Bechhoefer, J. Feedback for physicists: A tutorial essay on control. Reviews of modern physics 77, 783 (2005).
105. Gray, M. B., McClelland, D. E., Barton, M. & Kawamura, S. A simple high sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer. Optical and Quantum Electronics 31, 571–582 (1999).
106. Cohen, A. E. Control of nanoparticles with arbitrary two-dimensional force fields. Physical review letters 94, 118102 (2005).
107. Jun, Y., Gavrilov, M. & Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Physical review letters 113, 190601 (2014).
108. Wallin, A. E., Ojala, H., Hæggström, E. & Tuma, R. Stiffer optical tweezers through real-time feedback control. Applied Physics Letters 92, 224104 (2008).
109. Ojala, H. et al. Stiffer optical tweezers through real-time feedback control (2007).
110. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Reviews of modern physics 62, 251 (1990).
111. Roldán, É., Martínez, I. A., Dinis, L. & Rica, R. A. Measuring kinetic energy changes in the mesoscale with low acquisition rates. Applied physics letters 104, 234103 (2014).
112. Crooks, G. E. & Jarzynski, C. Work distribution for the adiabatic compression of a dilute and interacting classical gas. Physical Review E 75, 021116 (2007).
113. Zakine, R., Solon, A., Gingrich, T. & Van Wijland, F. Stochastic Stirling engine operating in contact with active baths. Entropy 19, 193 (2017).
114. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solv able model for stochastic heat engines. Europhysics Letters 81 (2008).
115. Esposito, M., Kawai, R., Lindenberg, K. & Van den Broeck, C. Efficiency at maximum power of low-dissipation Carnot engines. Physical review letters 105, 150603 (2010).
116. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).
117. Di Leonardo, R. et al. Bacterial ratchet motors. Proceedings of the National Academy of Sciences 107, 9541–9545 (2010).
118. Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angewandte Chemie International Edition 41, 652–654 (2002).
119. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society 126, 13424–13431 (2004).
120. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Physical review letters 99, 048102 (2007).
121. Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostruc tured propellers. Nano letters 9, 2243–2245 (2009).
122. Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Physical review letters 105, 268302 (2010).
123. Holubec, V. & Marathe, R. Underdamped active Brownian heat engine. Phys ical Review E 102, 060101 (2020).
124. Gronchi, G. & Puglisi, A. Optimization of an active heat engine. Physical Re view E 103, 052134 (2021).
125. Chen, X. & Muga, J. G. Transient energy excitation in shortcuts to adiabatic ity for the time-dependent harmonic oscillator. Physical Review A 82, 053403 (2010).
126. Martínez, I. A., Petrosyan, A., Guéry-Odelin, D., Trizac, E. & Ciliberto, S. Engineered swift equilibration of a Brownian particle. Nature physics 12, 843– 846 (2016).
127. Li, G., Quan, H. T. & Tu, Z. C. Shortcuts to isothermality and nonequilibrium work relations. Phys. Rev. E 96, 012144. issn: 2470-0045. http://link.aps. org/doi/10.1103/PhysRevE.96.012144 (2017).
128. Kwon, C., Noh, J. D. & Park, H. Work fluctuations in a time-dependent har monic potential: Rigorous results beyond the overdamped limit. Physical Re view E 88, 062102 (2013).
129. Landauer, R. Motion out of noisy states. Journal of statistical physics 53, 233– 248 (1988).
130. Cedraschi, P. & Büttiker, M. Zero-point fluctuations in the ground state of a mesoscopic normal ring. Physical Review B 63, 165312 (2001).
131. Gomez-Solano, J. R. Work extraction and performance of colloidal heat engines in viscoelastic baths. 50 years of Statistical Physics in Mexico: Development, State of the Art and Perspectives (2021).
132. Fodor, É., Kanazawa, K., Hayakawa, H., Visco, P. & Van Wijland, F. Energet ics of active fluctuations in living cells. Physical Review E 90, 042724 (2014).
133. Plata, C. A., Guéry-Odelin, D., Trizac, E. & Prados, A. Building an irreversible Carnot-like heat engine with an overdamped harmonic oscillator. Journal of Statistical Mechanics: Theory and Experiment 2020, 093207 (2020) |