博碩士論文 107222023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.15.221.67
姓名 廖冠智(Guan-Jr Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Decomposition of Methanol on Rhodium and Rhodium-Gold Bimetallic Nanoclusters Supported by Al2O3/NiAl(100): Studies under Ambient Pressure Conditions)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-1以後開放)
摘要(中) 我們研究在近室壓條件下,甲醇於銠、銠金奈米團簇上的反應及氣壓對奈米團簇結構之影響。實驗中甲醇氣壓範圍為10-6 – 0.5 mbar。此研究使用近室壓X射線光電子能譜學、紅外光反射-吸收光譜法、熱脫附質譜法、質譜法來進行實驗。實驗使用之基板為單晶鎳鋁合金NiAl(100)。為承載奈米團簇,會先曝氧氣於鎳鋁合金上並加溫形成氧化鋁薄膜。之後使用鍍槍將銠或金粒子蒸鍍於氧化鋁上,形成銠或銠金奈米團簇。樣品準備過程皆在超高真空環境中進行以降低可能的污染。
實驗結果顯示在近室壓條件下,甲醇在氧化鋁表面有反應發生:吸附於氧化鋁表面的甲醇會部分分解並參與含有OCO結構物質之形成。在近室壓環境中,甲醇在銠奈米團簇表面的分解方式主要是通過脫氫,其終端產物為一氧化碳和氫氣。銠奈米團簇對甲醇分解的反應能力具有尺寸相依性,與之前在超高真空環境下觀察到的結果相似:對於直徑小於 1.5 奈米的團簇,每單位吸附位置的產量約是直徑大於 1.5 奈米團簇的四倍大。
在近室壓條件下,甲醇在銠金奈米團簇上的分解也主要是通過脫氫。銠金奈米團簇的反應性與表面銠原子的數量有關。在近室壓反應環境中,銠金奈米團簇的結構變得不穩定:無論蒸鍍的順序為何,一部分的銠原子從銠金奈米團簇的內層移動到表面,導致銠/金訊號比增加。
摘要(英) We studied the decomposition of methanol on Rhodium and Rhodium-Gold bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) under near-ambient pressure (NAP) conditions (methanol partial pressure 10-6 – 0.5 mbar), with NAP photoelectron spectroscopy, infrared reflection absorption spectroscopy, and quadrupole mass spectrometer. In this study, the Al2O3 thin films were grown on the oxidation of NiAl(100) surface, and the clusters were formed by deposition of Rh and Au vapors onto the oxide films under ultrahigh vacuum (UHV) conditions.
The results show that the thin film Al2O3/NiAl(100) was not inert toward methanol decomposition under NAP conditions; adsorbed methanol was partially decomposed and involved in forming OCO species. Decomposition of methanol on Rh nanoclusters under NAP conditions is predominantly through dehydrogenation, with CO and H2 as terminal products. The Rh nanoclusters exhibited size-dependent reactivity toward methanol decomposition, resembling that observed under UHV conditions; for clusters with a diameter smaller than 1.5 nm, the production per Rh surface site is 4 times that of clusters with a diameter larger than 1.5 nm.
Decomposition of methanol on Rh-Au bimetallic clusters under NAP conditions is mainly through dehydrogenation, too. The reactivity of the Rh-Au bimetallic clusters was enhanced with the surface Rh. The structures of the Rh-Au bimetallic clusters became unstable under NAP reaction conditions; regardless of the order of deposition, a fraction of Rh atoms moved from the core to the surface of the bimetallic nanoclusters, leading to an increase in the Rh-to-Au signal ratio.
關鍵字(中) ★ 甲醇分解
★ 近室壓
★ 銠
★ 銠金雙金屬合金
★ 近室壓 X 光光電子能譜
★ 質譜法
關鍵字(英) ★ methanol decomposition
★ near-ambient pressure conditions
★ Rh
★ Rh-Au bimetallic alloy
★ APXPS
★ mass spectroscopy
論文目次 摘要 I
Abstract II
誌謝 III
Contents V
List of Figures VI
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 Structure and morphology of Rh nanoclusters 3
2.2 Decomposition of methanol on Rh nanoclusters 6
2.3 Structure and morphology of Rh-Au bimetallic nanoclusters 12
2.4 Decomposition of methanol on Rh-Au bimetallic nanoclusters 17
Chapter 3 Experimental Method and Apparatus 22
3.1 Experimental method 22
3.2 Ambient pressure X-ray photoemission spectroscopy (APXPS) 26
3.3 Temperature programmed desorption (TPD) 28
3.4 Infrared reflection adsorption spectroscopy (IRAS) 33
Chapter 4 Result & Discussion 40
4.1 Methanol on Al2O3 40
4.2 Decomposition of methanol on Rh nanoclusters 47
4.3 Decomposition of methanol on Rh-Au bimetallic clusters 55
Chapter 5 Conclusion 66
References 67
參考文獻 [1] Ting-Chieh Hung, Ting-Wei Liao, Zhen-He Liao, Po-Wei Hsu, Pei-Yang Cai, Hsuan Lee, Yu-Ling Lai, Yao-Jane Hsu, Hui-Yu Chen, Jeng-Han Wang*, and Meng-Fan Luo*, “Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol,” ACS Catal., 5, 7, 2015, 4276–4287.
[2] Hsuan Lee, Zhen-He Liao, Po-Wei Hsu, Yu-Cheng Wu, Meng-Chin Cheng, Jeng-Han Wang* and Meng-Fan Luo*, “Decomposition of methanol-d4 on Au–Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100),” Phys.Chem.Chem.Phys., 20, 2018, 11260.
[3] Po-Wei Hsu, Zhen-He Liao, Ting-Chieh Hung, Hsuan Lee, Yu-Cheng Wu, Yu-Ling Lai, Yao-Jane Hsu, Yuwei Lin, Jeng-Han Wang* and Meng-Fan Luo*, “Formation and structures of Au–Rh bimetallic nanoclusters supported on a thin film of Al2O3/NiAl(100),” Phys.Chem.Chem.Phys., 19, 2017, 14566.
[4] Ting-Chieh Hung, Ting-Wei Liao, Zhen-He Liao, Po-Wei Hsu, Pei-Yang Cai, Wen-Hua Lu, Jeng-Han Wang* and Meng-Fan Luo*, “Dependence on size of supported Rh nanoclusters for CO adsorption,” RSC Adv., 6, 2016, 3830-3839.
[5] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.
[6] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62. 2002.
[7] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[8] Elaine M. McCash, Surface Chemistry, Oxford University Press, 2001.
[9] Hans Lüth, Surface and Interfaces of Solid (2nd), Springer-Verlag, 1993.
[10] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College, 1992.
[11] P. Hollins, J. Pritchard, “Infrared studies of chemisorbed layers on single crystals,” Progress in Surface Science, 19, 1985, 275-349.
[12] F.M. Hoffmann, “Infrared reflection-absorption spectroscopy of adsorbed molecules,” Surface Science Reports, 3, 1983, 107-192.
[13] E.S. A.M. Bradshaw, Infrared reflection absorption spectroscopy of adsorbed molecules, New York: Wiley, 1988.
[14] R.G. Greenler, “Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques,” The Journal of Chemical Physics, 44, 1966, 310-315.
[15] H. Ibach, Physics of Surfaces and Interfaces, Springer-Verlag, 2006.
[16] M. Bäumer, H.-J. Freund, “Metal deposits on well-ordered oxide films,” Progress in Surface Science, 61, 1999, 127-198.
[17] ABB FT-IR reference manual.
[18] 李冠卿:《近代光學》,聯經出版社,1988。
[19] Lisiane V. Mattos, Gary Jacobs, Burtron H. Davis, and Fábio B. Noronha*, “Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation,” Chem. Rev., 112, 7, 2012, 4094–4123.
[20] Gerhard Ertl and Hans-Joachim Freund, “Catalysis and Surface Science,” Phys. Today., 52, 1, 1999, 32.
[21] Guan-Jr Liao, Kuan-Ting Liu, Zhen-He Liao, Po-Wei Hsu, Jeng-Han Wang,* and Meng-Fan Luo*, “Dependence on Size of Supported Rh Nanoclusters in the Dehydrogenation of Methanol‑d4 Obstructed by CO,” J. Phys. Chem. Lett., 12, 2021, 2622−2629.
[22] Samuel A. Tenney, S. Islamuddin Shah, Hui Yan, Brett A. Cagg, Mara S. Levine, Talat S. Rahman, and Donna A. Chen*, “Methanol Reaction on Pt−Au Clusters on TiO2(110): Methoxy Induced Diffusion of Pt,” J. Phys. Chem. C, 117, 2013, 26998−27006.
指導教授 羅夢凡 審核日期 2022-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明