博碩士論文 109222012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.149.168
姓名 郭來翔(Lai-Hsiang Kuo)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Manipulating catalytic performance of layered PdTe2 by engineering surface defects)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-30以後開放)
摘要(中) 我們以氬氣轟擊PdTe2的表面以製造表面Te缺陷,藉由控制氬氣的量,表面Te缺陷的濃度同樣也能被控制;若以反射式高能電子繞射儀(reflected high energy electron diffraction RHEED)進行表面晶格的量測時,樣品本身的晶格結構並未發生變化,但缺陷使得繞射條紋變的模糊;另外以同步輻射光源的光電子能譜術(synchrotron-based photoelectrons spectroscopy PES)對表面進行同樣的量測,我們發現經過氬氣轟擊後,Pd 3d的能譜中觀測到額外的電子,同時Te 4d的能譜並沒有發生變化。結合RHEED以及PES的資料,我們得知經過氬氣轟擊後的表面產生了Te空缺,此空缺使晶格的對稱性變弱,留下的空缺使隔壁產生了未鍵滿的Pd(Pduc),而被氬氣轟擊後的表面在經過520 K的加熱後,表面能回復成原來尚未經過轟擊前的狀態。
在超高真空環境下,我們個別做了水和甲醇的吸附催化反應,以更進一步探討表面缺陷對催化效應的影響,不管是在乾淨或缺陷的表面上,水皆不會分解;我們也將甲醇曝到有缺陷及乾淨的PdTe2表面上,甲醇經過升溫後會發生C-O及C-H的斷鍵並產生CHxO 和 CHx ,隨著越多的Pduc以氬氣轟擊的方式被產生,甲醇的分解量也隨之上升,此結果反應出Pduc是甲醇分解反應的反應位置。當我們把甲醇的量上升到近常壓的狀態,PdTe2對甲醇的分解效應也發生了改變,不管是乾淨或缺陷的表面,皆可以進行甲醇分解反應,並觀測到氫氣及水/甲烷的產生,甲醇在近常壓的狀態下不只會分解,分解的同時表面上的Te原子也隨之減少,進而產生Te的空缺,使Pduc被觀測到,而同時Pduc又是促進甲醇分解的反應位置,這種甲醇及Pduc互相催化的連鎖效應使得表面的化學結構發生了劇烈的變化,並使得Pduc最終會占滿整個表面,此結果反應出只需以乾淨表面本身所具備的樣品固有缺陷便足夠進行甲醇分解反應,最後當我們將系統抽回超高真空並同樣升溫到520 K,表面的PdTe2鍵結又重新出現並開始回復。
摘要(英) We studied PdTe2 surface Te defects engineering and catalytic properties by synchrotron-based photoelectrons spectroscopy (PES), quadrupole mass spectrometer (QMS) in both UHV and near ambient pressure conditions, and reflected high energy electron diffraction (RHEED) system in UHV condition. To generate the Te defects on the surface, we produce Ar+ bombardment process. By controlling the dosages of Ar+, the numbers of Te defects can be engineered. From the PES results, after Te defects are produced, under-coordinated Pd (Pduc) is observed in Pd 3d core level PES spectrum. The surface can recover back to the pristine surface through the 520 K annealing process, which is monitored by both RHEED and PES.
The formation of Pduc promotes the methanol decomposition reaction compared with the inert as-cleaved PdTe2 surface. The methanol decomposes into CHxO and CHx through the temperature increase which indicated the C-H and C-O bonds are broken at the same time. The production grows when the numbers of Pduc increase. Pduc is determined as the active site in the methanol decomposition reaction. The water dissociative reaction is also produced. In both as-cleaved and defected surfaces, the reactivity remains inert.
In the near ambient condition, the methanol decomposed on the as-cleaved and defected surface. The formation of hydrogen and water/methane is observed and increase through pressure increase. The Te atoms are removed from the surface and generates more Te vacancies which are recognized as Pduc through the pressure increase. Since Pduc is the active site of methanol decomposition reaction. The inducement of Pduc promotes more methanol decomposing. This chain effect can lead to surface chemical environments processing an extreme change which leads to the Pduc dominating the whole surface. Namely, even the intrinsic vacancies can produce the reaction. The surface also can be recovered through the annealing process after pumping back to UHV.
關鍵字(中) ★ 二碲化鈀
★ 表面催化
★ 缺陷控制
★ 超高真空催化
★ 近常壓催化
關鍵字(英) ★ PdTe2
★ surface catalysis
★ defects manipulating
★ UHV catalysis
★ near ambient pressure catalysis
論文目次 摘要 i
Abstract ii
誌謝 iii
Content iv
List of Figure v
List of Table ix
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 Defects formation after Ar+ bombarded on TMDs 3
2.2 Defects reactivity on PdTe2 single crystal surface 5
2.3 Roles of chalcogenides vacancies play in reaction 8
2.4 Methanol induced chalcogenides vacancies 10
Chapter 3 Experimental Method & Apparatus 13
3.1 System preparation 13
3.2 Experimental procedure 24
Chapter 4 Results and Discussion 29
4.1 Under-coordinated Pd on PdTe2 29
4.2 Methanol decomposed activated on PdTe2 in UHV 33
4.3 Methanol promotes Pduc formation on PdTe2 surface 38
Chapter 5 Conclusion 49
參考文獻 1. Noh, H.-J., et al., Experimental Realization of Type-II Dirac Fermions in a PdTe2 Superconductor. Physical Review Letters, 119(1): p. 016401, 2017.
2. D′Olimpio, G., et al., PdTe2 Transition-Metal Dichalcogenide: Chemical Reactivity, Thermal Stability, and Device Implementation. Advanced Functional Materials, 30(5): p. 1906556, 2020.
3. Chen, Y., et al., Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano, 12(3): p. 2569-2579, 2018.
4. Bertolazzi, S., et al., Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Advanced Materials, 29(18): p. 1606760, 2017.
5. Hu, J., et al., Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 4(3): p. 242-250, 2021.
6. Evans, P.E., et al., Methoxy Formation Induced Defects on MoS2. The Journal of Physical Chemistry C, 122(18): p. 10042-10049, 2018.
7. Vickerman, J.C., Surface analysis : the principal techniques. 1997: John Wiley & Sons.
8. Santra, A.K. and D.W. Goodman, Oxide-supported metal clusters: models for heterogeneous catalysts. Journal of Physics: Condensed Matter, 15(2): p. R31-R62, 2002.
9. Hauffe, W., et al., Surface Analysis Methods in Materials Science. Crystal Research and Technology, 27(8): p. 1078-1078, 1992.
10. Yang, Y.W. and L.J. Fan, High-Resolution XPS Study of Decanethiol on Au(111):  Single Sulfur−Gold Bonding Interaction. Langmuir, 18(4): p. 1157-1164, 2002.
11. Nappini, S., et al., Transition-Metal Dichalcogenide NiTe2: An Ambient-Stable Material for Catalysis and Nanoelectronics. Advanced Functional Materials, 30(22): p. 2000915, 2020.
12. Besharat, Z., et al., Dehydrogenation of methanol on Cu2O(100) and (111). The Journal of Chemical Physics, 146(24): p. 244702, 2017.
13. Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 18(43): p. 30117-30127, 2016.
14. Hsia, Y.-Y., et al., Effects of O2 and H2O in the Oxidative Steam-Reforming Reaction of Ethanol on Rh Catalysts. The Journal of Physical Chemistry C, 123(18): p. 11649-11661, 2019.
15. Koitaya, T., et al., Systematic Study of Adsorption and the Reaction of Methanol on Three Model Catalysts: Cu(111), Zn–Cu(111), and Oxidized Zn–Cu(111). The Journal of Physical Chemistry C, 121(45): p. 25402-25410, 2017.
16. Lee, A.F., et al., A Fast XPS study of the surface chemistry of ethanol over Pt{111}. Surface Science, 548(1): p. 200-208, 2004.
17. Pöllmann, S., et al., Adsorption and Reaction of Methanol on Clean and Oxygen Precovered Cu(111). Zeitschrift für Physikalische Chemie, 218(8): p. 957-971, 2004.
18. Setvin, M., et al., Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS Catalysis, 7(10): p. 7081-7091, 2017.
19. Weststrate, C.J., et al., Ethanol Adsorption, Decomposition and Oxidation on Ir(111): A High Resolution XPS Study. ChemPhysChem, 8(6): p. 932-937, 2007.
20. Vesselli, E., et al., Ethanol Decomposition: C-C Cleavage Selectivity on Rh(111). ChemPhysChem, 5(8): p. 1133-1140, 2004.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明