參考文獻 |
參考文獻
[1] Ozturk, F., Sisman, A., Toros, S., Kilic, S., & Picu, R. C. Influence of aging treatment on mechanical properties of 6061 aluminum alloy., Materials and Design 31 2010;972–975.
[2] ASM Handbook , Property and selection:Nonferrous Alloys and Pure Metals, ASM,Vol.2 9th pp.1-236, 1979.
[3] 許源泉,鍛造學理論與實習,三民書局,1990
[4] 金屬工業發展中心,鍛造技術,經濟部國際貿易局,1981
[5] 周俊宏,金屬二次加工Technology roadmap專題研究-沖壓、鍛造,經濟部,2002
[6] Y.-K. Fuh, C.-P. Chen, W.-L. Wu, M.-S. Ho, C.-S. Tzeng, A Controlled Material Flow Forming Mechanism of Curve Cutter Forging in The Hot Impression Forging of The Medical Instrument, (2021).
[7] J. Xu, W. Xu, J. Li, X. Zeng, K. Li, D. Shan, Preform design and microstructure-property analysis for isothermal extrusion of complex box-shaped components, The International Journal of Advanced Manufacturing Technology, 114 (2021) 2339-2356.
[8] M. Sedighi, S. Tokmechi, A new approach to preform design in forging process of complex parts, Journal of materials processing technology, 197 (2008) 314-324.
[9] N. Biba, A. Vlasov, D. Krivenko, A. Duzhev, S. Stebunov, Closed die forging preform shape design using isothermal surfaces method, Procedia Manufacturing, 47 (2020) 268-273.
[10] PANDYA, Vishal A.; GEORGE, P. M. Effect of preform design on forging load and effective stress during closed die hot forging process of pin. Materials Today: Proceedings, (2021), 44: 106-112.
[11] W. Sun, L. Chen, T. Zhang, K. Zhang, G. Zhao, G. Wang, Preform optimization and microstructure analysis on hot precision forging process of a half axle flange, The International Journal of Advanced Manufacturing Technology, 95 (2018) 2157-2167.
[12] Y.J. Guo, L. Deng, X.Y. Wang, J.S. Jin, W.W. Zhou, Hot deformation behavior and processing maps of 7050 aluminum alloy, in: Advanced Materials Research, Trans Tech Publ, (2013), pp. 37-42.
[13] A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, Optimization of the hot forging parameters for 4340 steel by processing maps, Journal of Materials Research and Technology, 8 (2019) 3281-3290.
[14] B. Wu, M. Li, D. Ma, The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy, Materials Science and Engineering: A, 542 (2012) 79-87.
[15] P. Gao, M. Fei, X. Yan, S. Wang, Y. Li, L. Xing, K. Wei, M. Zhan, Z. Zhou, Z. Keyim, Prediction of the folding defect in die forging: a versatile approach for three typical types of folding defects, Journal of Manufacturing Processes, 39 (2019) 181-191.
[16] F. Chen, F. Ren, J. Chen, Z. Cui, H. Ou, Microstructural modeling and numerical simulation of multi-physical fields for martensitic stainless steel during hot forging process of turbine blade, The International Journal of Advanced Manufacturing Technology, 82 (2016) 85-98.
[17] X. Hu, L. Hua, X. Han, Study on the microstructure and texture evolution of hot forged 20CrMnTiH steel spur bevel gear by simulation and experiment, Journal of Materials Engineering and Performance, 29 (2020) 3688-3701.
[18] P.-w. Li, H.-z. Li, L. Huang, X.-p. Liang, Z.-x. Zhu, Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map, Transactions of Nonferrous Metals Society of China, 27 (2017) 1677-1688.
[19] X. Chen, Y. Si, R. Bai, X. Zhang, Z. Li, Hot Formability Study of Cr5 Alloy Steel by Integration of FEM and 3D Processing Maps, Materials, 15 (2022) 4801.
[20] S. GÜndÜz, A. Çapar, Influence of forging and cooling rate on microstructure and properties of medium carbon microalloy forging steel, Journal of Materials Science, 41 (2006) 561-564.
[21] R.E. Sanders, Technology innovation in aluminum products, Jom, 53 (2001) 21-25.
[22] O.M. Ikumapayi, E.T. Akinlabi, P. Onu, Emerging trend in forging operation, in: Advances in Manufacturing Engineering, Springer, 2020, pp. 161-170.
[23] Z. Gronostajski, Z. Pater, L. Madej, A. Gontarz, L. Lisiecki, A. Łukaszek-Sołek, J. Łuksza, S. Mróz, Z. Muskalski, W. Muzykiewicz, Recent development trends in metal forming, Archives of Civil and Mechanical Engineering, 19 (2019) 898-941.
[24] L. Deng, X. Wang, J. Jin, J. Xia, Precision forging technology for aluminum alloy, Frontiers of Mechanical Engineering, 13 (2018) 25-36.
[25] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds 550(2013) 438-445.
[26] P.A. Babu, M. Saraf, K. Vora, S.M. Chaurasiya, P. Kuppan, Influence of forging parameters on the mechanical behavior and hot forgeability of aluminium alloy, Materials Today: Proceedings, 2 (2015) 3238-3244.
[27] M. Poursina, J. Parvizian, Simulation of folding defect in forging, in: AIP Conference Proceedings, American Institute of Physics, 2004, pp. 486-491.
[28] D Sang, R Fu, Y Li, The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes. Metals, (2016) 6.3: 49.
[29] H Gong, X Cao, Y Liu, Y Wu, F Jiang, M Zhang, Simulation and Experimental Study on the Inhomogeneity of Mechanical Properties of Aluminum Alloy 7050 Plate. Metals (2020) 10.4: 515.
[30] B.-A. Behrens, Finite element analysis of die wear in hot forging processes, CIRP annals, 57 (2008) 305-308.
[31] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Marciniak, M. Zwierzchowski, A. Mazurkiewicz, J. Smolik, Improving durability of hot forging tools by applying hybrid layers, Metalurgija, 54 (2015) 687-690.
[32] J. Smolik, Hybrid surface treatment technology for increase of hot forging dies, Archives of Metallurgy and Materials, 57 (2012) 657-664.
[33] W.-P. Dong, C. Jun, 3D FEA simulation of 4A11 piston skirt isothermal forging process, Transactions of Nonferrous Metals Society of China, 18 (2008) 1196-1200.
[34] S.-W. Lee, J.-W. Jo, M.-S. Joun, J.-M. Lee, Effect of friction conditions on material flow in FE analysis of Al piston forging process, International Journal of Precision Engineering and Manufacturing, 20 (2019) 1643-1652.
[35] J. Xu, W. Xu, J. Li, X. Zeng, K. Li, D. Shan, Preform design and microstructure-property analysis for isothermal extrusion of complex box-shaped components, The International Journal of Advanced Manufacturing Technology, 114 (2021) 2339-2356.
[36] G. Angella, A. Di Schino, R. Donnini, M. Richetta, C. Testani, A. Varone, AA7050 Al alloy hot-forging process for improved fracture toughness properties, Metals, 9 (2019) 64.
[37] M. Hawryluk, J. Ziemba, Possibilities of application measurement techniques in hot die forging processes, Measurement, 110 (2017) 284-295.
[38] I. Konstantinov, S. Sidelnikov, D. Voroshilov, S. Belyaev, Y.V. Gorokhov, I.Y. Gubanov, V. Belokopytov, E. Ivanov, M. Voroshilova, Use of computer simulation for modernization technology of aluminum alloys hot die forging, The International Journal of Advanced Manufacturing Technology, 107 (2020) 1641-1647.
[39] R. Lin, B. Liu, J. Zhang, S. Zhang, Microstructure evolution and properties of 7075 aluminum alloy recycled from scrap aircraft aluminum alloys, Journal of Materials Research and Technology, 19 (2022) 354-367.
[40] R. Branco, J. Costa, L. Borrego, S. Wu, X. Long, F. Zhang, Effect of strain ratio on cyclic deformation behaviour of 7050-T6 aluminium alloy, International Journal of Fatigue, 129 (2019) 105234. |