博碩士論文 108328016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.73.79
姓名 陳珮瑜(Pei-Yu Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 碳化矽光輔助化學處理之表面特性探討
(Characterizations of Photon-assisted Chemically Treated Silicon Carbide Surface)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究
★ 新型光學式自動聚焦顯微鏡的設計與其性能分析★ 以田口法作微型動壓軸承最佳化設計與性能評價
★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
★ 雷射還原石墨烯之場發射特性探討★ 崁入式網印金屬網格電極製作於有機發光二極體之應用
★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工
★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極★ 靜電紡絲結合選擇性無電鍍沉積製作可撓式金屬網絡透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討光輔助化學處理(Photon-assisted Chemical Processing, PACP)對半導體表面特性之影響,以矽晶圓與碳化矽晶圓為主要研究對象。其中碳化矽晶圓為目前第三代半導體主要材料,其高穩定性、高硬度、寬能隙及低熱膨脹率的特性為高功率、高頻元件所需。商用之碳化矽晶圓需經由長晶成晶柱後,通過線鋸切片、研磨與拋光等繁瑣、耗時之過程。但也由於其極高的硬度加上高化學穩定性,採用現有研磨拋光技術,加工速率緩慢,需耗費大量時間與耗材,成本極高,致使晶圓價格居高不下。本研究探討經PACP後之碳化矽表面探性。實驗結果顯示,此處理可在碳化矽表面創造一均勻且軟化的改質層,相較於未處理之碳化矽表面,其硬度降低了40%。在研磨特性方面,我們使用砂紙進行機械式研磨,可在數十分鐘內達奈米級之表面粗糙度。對於碳化矽之晶圓研磨,此法應有高效率及降低成本之效益。
摘要(英) This study investigates the effect of a proposed surface treatment, named Photon-assisted Chemical Processing (PACP), on the surface properties of semiconductors, mainly silicon and silicon carbide wafers. Among them, the silicon carbide wafer is the key component for third-generation semiconductor manufacturing because its high stability, high hardness, wide energy gap, and low thermal expansion coefficient are required for high-power and high-frequency devices. Commercial silicon carbide wafers go through a tedious and time-consuming process of wire saw slicing, grinding, and polishing after the crystals are grown into columns. However, due to its extremely high hardness and extremely high chemical stability, using the existing grinding and polishing technology, the processing speed is slow, the time-consuming consumables are many, and the cost is extremely high, resulting in the high wafer price. However, due to its extremely high hardness and high chemical stability, using the existing grinding and polishing technology, the processing speed is slow, the time-consuming consumables are many, and resulting in the high wafer price. This study investigated the surface properties of silicon carbide after the PACP. Experimental results show that this treatment could generate a uniform and softened modified layer, with thickness up to several tens of micrometer, on the wafer surface. Compared to the untreated surface, the hardness was reduced by 40%. In terms of grinding characteristics, we used sandpaper for mechanical grinding, which could reach nanometer-level surface roughness within several tens of minutes. For silicon carbide wafer grinding, this method should be efficient and cost-effective.
關鍵字(中) ★ 半導體材料
★ 矽晶圓
★ 碳化矽晶圓
★ 碳化矽研磨
★ 光輔助化學處理
★ 機械研磨
關鍵字(英) ★ Semiconductor materials
★ Silicon wafer
★ Silicon carbide wafer
★ Silicon carbide wafer grinding
★ Photon-assisted chemically processing (PACP)
★ Mechanical grinding
論文目次 中文摘要 VI
英文摘要 VI
CONTENTS VII
FIGURE CONTENTS IX
TABLE CONTENTS XII
Chapter 1 Introduction 1
1-1 Background 1
1-2 Research Purpose and Motivation 2
Chapter 2 Literature review 4
2-1 Process of photon-assisted chemically processing 4
2-2 Silicon Carbide Properties 7
2-3 Existing Grinding Technology of Silicon Carbide 9
Chapter 3 Experimental details 10
3-1 Research structure and process 10
3-2 Preparation of material samples 11
3-2-1 Silicon & Silicon Carbide 11
3-2-2 Silver nanoparticle catalytic ink 11
3-2-3 Solutions for modifying Semiconductor Materials 11
3-2-4 Preparation before grinding SiC 12
3-3 Experiment details 12
3-3-1 Pre-experimental preparation and Modification steps 12
3-3-2 Grinding 14
3-4 Detection and Analysis 15
3-4-1 Surface profile (SEM) 15
3-4-2 Ra/Rz(Laser Scanning Microscopes) 15
3-4-3 Vickers hardness test 16
3-4-4 Crystal phase detection (X-ray diffractometer) 17
3-4-5 Particle size detection 18
3-5 Equipment and testing instruments 19
Chapter 4 Results and Discussion 21
4-1 Silver nanoparticle catalytic ink in the Photon-assisted Chemical Processing 21
4-1-1 Properties of silver nanoparticle catalytic ink 21
4-1-2 Process comparison 22
4-1-3 Results of modification 23
4-1-3-1 Surface profile 23
4-1-3-2 Cross Section 26
4-1-3-3 Hardness test 29
4-2 The grinding of modification silicon carbide 30
4-2-1 Trends in time and removal rates 30
4-2-2 Roughness 31
4-2-3 Relationship between particle size of sandpaper and SiC surface roughness 35
4-2-4 Surface crystal phase detection 37
Chapter 5 Conclusions 39
References 41
口試委員提問 45
參考文獻 [1] D. Dimova Malinovska , M. Sendova Vassileva , N. Tzenov , M. Kamenova , “Preparation of thin porous silicon layers by stain etching” ,Thin Solid Films 1997 , 297 , 9 .
[2] X. Li , P. W. Bohn , Appl. Phys. Lett. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon” 2000 , 77 , 2572
[3] S. Sedky et al., "Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications," in Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 365-372, Dec. 1998, doi: 10.1109/84.735343.M. Aizawa , A. M. Cooper , M. Malac , J. M. Buriak ,” Silver Nano-Inukshuks on Germanium” Nano Lett. 2005 , 5 , 815
[4] Y. Yasukawa , H. Asoh , S. Ono ,” Site-selective chemical etching of GaAs through a combination of self-organized spheres and silver particles as etching catalyst” Electrochem. Commun. 2008 , 10 , 757 .
[5] Y. Yasukawa , H. Asoh , S. Ono , J. Electrochem. “Site-selective metal pattering / metal-assisted chemical etching on GaAs substrate through colloidal crystal templating” Soc. 2009 , 156 , H777 .
[6] X. L. Li , K. Y.-W. , P. W. Bohn , I. Adesida ,” In-plane bandgap control in porous GaN through electroless wet chemical etching” Appl. Phys. Lett. 2002 , 80 , 980 .
[7] T. L. Rittenhouse , P. W. Bohn , I. Adesida ,” Structural and spectroscopic characterization of porous silicon carbide formed by Pt-assisted electroless chemical etching” Solid State Commun 2003 , 126 , 245 .
[8] Kong, L., Dasgupta, B., Ren, Y. et al. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. Sci Rep 6, 36582 (2016). https://doi.org/10.1038/srep36582
[9] S. Chattopadhyay , X. L. Li , P. W. Bohn ,” In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching” J. App. Phys. 2002 , 91 , 6134 .
[10] K. Q. Peng , H. Fang , J. J. Hu , Y. Wu , J. Zhu , Y. J. Yan , S. Lee ,” Metal‐particle‐induced, highly localized site‐specific etching of Si and formation of single‐crystalline Si nanowires in aqueous fluoride solution” Chem.–Eur. J. 2006 , 12 , 7942 .
[11] C. Y. Chen , C. S. Wu , C. J. Chou , T. J. Yen , “Morphological control of single‐crystalline silicon nanowire arrays near room temperature”Adv. Mater. 2008 , 20 , 3811 .
[12] C. L. Lee , K. Tsujino , Y. Kanda , S. Ikeda , M. Matsumura ,” Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts” J. Mater. Chem. 2008 , 18 , 1015 .
[13] M. L. Zhang , K. Q. Peng , X. Fan , J. S. Jie , R. Q. Zhang , S. T. Lee , N. B. Wong , “Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching”J. Phys. Chem. C 2008 , 112 , 4444 .
[14] Y. Harada , X. L. Li , P. W. Bohn , R. G. Nuzzo , “Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays”J. Am. Chem. Soc.2001 , 123 , 8709 .
[15] K. Q. Peng , J. J. Hu , Y. J. Yan , Y. Wu , H. Fang , Y. Xu , S. T. Lee , J. Zhu , “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles” Adv. Funct. Mater. 2006 , 16 , 387 .
[16] Markus Leitgeb, Christopher Zellner, Michael Schneider, Stefan Schwab, Herbert Hutter, and Ulrich Schmid, “ Metal Assisted Photochemical Etching of 4H-Silicon Carbide”, J of Physics D Applied Physics 2017.50(43)
[17] Nichkalo, S., Druzhinin, A., Evtukh, A. et al. Silicon Nanostructures Produced by Modified MacEtch Method for Antireflective Si Surface. Nanoscale Res Lett 12, 106 (2017).
[18] CRC Handbook of Chemistry and Physics 97th Edition. 2016-06-24: 4–84. ISBN 1-4987-5428-7
[19] Patnaik, P. Handbook of Inorganic Chemicals. McGraw-Hill. 2002. ISBN 0-07-049439-8.
[20] Cheung, Rebecca. Silicon carbide microelectromechanical systems for harsh environments. Imperial College Press. 2006: 3. ISBN 1-86094-624-0.
[21] Morkç, H.; Strite, S.; Gao, G. B.; Lin, M. E.; Sverdlov, B.; Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. Journal of Applied Physics. 1994, 76 (3): 1363.
[22] Bhatnagar, M.; Baliga, B.J. “Comparison of 6H-SiC, 3C-SiC, and Si for power devices”. IEEE Transactions on Electron Devices. March 1993, 40 (3): 645–655.
[23] Yu.V.Milmana,S.I.Chugunovaa,I.V.Goncharovaa,T.Chudobab,W.Lojkowskib,W.Goochc. Temperature dependence of hardness in silicon–carbide ceramics with different porosity, International Journal of Refractory Metals and Hard Materials Volume 17, Issue 5, 1 November 1999, Pages 361-368
[24] Lionel Vargas-Gonzalez,Robert F. Speyer,James Campbell,” Flexural Strength, Fracture Toughness, and Hardness of Silicon Carbide and Boron Carbide Armor Ceramics”. International Journal of Applied Ceramic Technology 2010 Volume 7, Issue 5 p. 643-651
[25] Eric W. Neuman,Harlan J. Brown-Shaklee,Gregory E. Hilmas,William G. Fahrenholtz, “Titanium diboride–silicon carbide–boron carbide ceramics with super-high hardness and strength.”, Journal of the American Ceramic Society 2017 Volume 101, Issue 2 p. 497-501
[26] Ling Zhou, Valerie Audurier, and Pirouz Pirouz, “Chemomechanical Polishing of Silicon Carbide”, 1997 ECS - The Electrochemical Society Journal of The Electrochemical Society, Volume 144, Number 6
[27] Hideo Aida , Toshiro Doi , Hidetoshi Takeda, Haruji Katakura, Seong-Woo Kim, Koji Koyama, Tsutomu Yamazaki, Michio Uneda, “Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials”, Current Applied Physics 12 (2012) S41eS46
[28] Gaoling Ma,Shujuan Li *,Feilong Liu *,Chen Zhang,Zhen Jia andXincheng YinORCID, “A Review on Precision Polishing Technology of Single-Crystal SiC”, Crystals 2022, 12(1), 101
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明