博碩士論文 106622608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.118.24.166
姓名 迪馬斯(Dimas Salomo Januarianto Sianipar)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 印尼弗洛雷斯逆衝斷層沿線地震的震源特徵
(Earthquake Source Characteristics along the Flores Thrust Fault, Indonesia)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 位於東蘇答班達島弧(印度尼西亞)的弗洛雷斯逆衝斷層是世界上罕見的弧後逆衝斷層之一。此向南傾斜斷層的弧後區域的位置自蘇達/爪哇海溝俯衝帶延伸到帝汶海槽陸弧碰撞過渡帶。關於該斷裂帶在板塊構造發育及現今運動學上,仍有一些值得爭論的觀點。儘管弗洛雷斯衝斷層經常發生破壞性淺層地震和一些引發型海嘯,至今仍舊缺少有關弗洛雷斯逆衝斷層帶地震震源調查的研究。弗洛雷斯逆衝斷層的其中三個部分一直處於地震活躍的階段,目前的地震目錄中記錄了一些明顯達到M5.7+的地震,從西向東,分別為龍目島段,松巴哇段和西弗洛雷斯段。在斷裂帶西部的這些區段中,地震活動往往伴隨著發生中等規模的地震。

本論文使用來自全球和區域地震觀測網的地震資料,主要針對 1999 年至 2022 年發生的地震,調查了弗洛雷斯逆衝斷層沿線地震的震源特徵。我們採用MW 6.2+ 的地震作為控制,利用遠震體波和表面波進行了有限斷層破裂反演,並透過刀切抽樣法去計算模型的不確定性。此外,我們使用雙差震源重定位和統計地震學研究了龍目島和西弗洛雷斯的兩個地震序列。斷層中有三個段落是我們特別關註的:在 2018 年 7 月至 8 月龍目島地震序列中破裂的龍目島部分(1 MW 6.5 和 2 MW 6.9 事件);在 2002 年至 2009 年松巴哇地震中破裂的松巴哇部分(5 MW 6.2 -6.6 事件); 以及 2003 年發生 MW 6.4 正常斷層事件和 2022 年地震序列的西弗洛雷斯段。

我們針對以描述弗洛雷斯逆衝斷層沿線的特徵地震源和地震活動進行了完整的地震學分析。我們認為地震破裂位在該區域的主要分支逆衝斷層,而不是在俯衝弗洛雷斯海洋地殼的基底滑脫斷層中。我們強調了弗洛雷斯逆沖地震的逆衝破裂過程的相似性,即它們的起始破裂、破裂速度、破裂大小和靜應力下降,它們是發生在板塊邊界的逆衝型地震。

在龍目島部分,我們討論了 2018 年異常的高能地震活動度與其他重大事件的破裂行為的關係。複雜斷層破裂與地震活動的時空演變之間的機制差異表示地震-火山相互作用,並提供了對斷層破裂在這種斷層-火山環境中的行為方式的見解。此外,地震活動範圍的最西端和最東端也顯示出強大的分段屏障。在松巴哇段,我們所構建的五個中等地震的有限斷層模型表明一個非重疊的地栓區域。破裂通常沿走向或下傾方向傳播,靜應力降低。我們認為在西弗洛雷斯逆衝斷層上具有低靜態應力降的中等尺度地栓在特徵上相較於已成熟發展的東部相比還不太成熟。或者,這些位在松把哇段下傾的地震可能如地栓一般活動,其較淺的部分仍有可能發生 MW> 7.0 的破裂,類似於 1836 年的歷史地震。在西弗洛雷斯段, 2022 年地震序列也破裂了主要的張開逆衝斷層並突出了複雜的變形,但我們可以確認 2003 年的正斷層事件不座落在弗洛雷斯逆衝斷層上,相反的,它是在弗洛雷斯海早期俯衝板塊(板塊內地震事件)中,位在弗洛雷斯逆衝斷層帶下方深度更深的板塊破裂。

基於震源模型和地震活動分析結果,我們提出了一種新的地震構造模型和弗洛雷斯逆衝斷層帶的分段。研究結果顯示出弗洛雷斯衝斷層是一個複雜的不連續帶,並且本研究中所分析的三個斷層分段分別表現了不同的結果。我們為沿弗洛雷斯逆衝斷層的重大地震編制了地震尺度,這是建立震源標度所必需的。本研究提供了對弗洛雷斯逆衝斷層沿線斷層力學和地震活動度的統一處理,並闡明了龍目島、松巴哇和西弗洛雷斯段的地震板塊構造、地震成核、地震活動度,這對於進一步的地震危害分析是必要的。
摘要(英) The Flores Thrust fault zone in the eastern Sunda–Banda arc (Indonesia) is one of the rare back-arc thrusting faults in the world. This southward-dipping fault is located in the back-arc region in the transition zone from the subduction zone at the Sunda/Java trench to the continent-to-arc collision at the Timor trough. There are some arguable views on the tectonic development and present kinematics of this fault zone. Despite the Flores Thrust often hosting destructive shallow earthquakes and some triggered tsunami, there is a lack of study that integrates seismic source investigations for earthquakes along the Flores Thrust fault zone. Three parts of the Flores Thrust fault have been seismically active and produced some significant M5.7+ earthquakes in the present earthquake catalog, namely, from west to east, the Lombok segment, the Sumbawa segment, and the West Flores segment. The seismicity tends to be clustered with a cascade of moderate magnitude earthquakes in these segments in the western part of the fault zone.

Using seismic data came from the global and regional seismic network, in this thesis, we investigate the source characteristics of earthquakes along the Flores Thrust fault zone, mainly for earthquakes that occurred from 1999 to 2022. We performed finite-fault rupture inversions for MW 6.2+ earthquakes constrained by the teleseismic body and surface waves and introduced jackknife resampling tests to measure the model uncertainties. In addition, we investigated two seismic sequences in Lombok and West Flores using double-difference hypocenter relocation and statistical seismology. We mainly focus on three segments, the Lombok segment that ruptured in July–August 2018 Lombok seismic sequence (with one MW 6.5 and two MW 6.9 events), the Sumbawa segment that ruptured in the 2002–2009 Sumbawa earthquakes (with five MW 6.2–6.6 events), and the West Flores segment that hosted an MW 6.4 normal-faulting event in 2003 and a seismic sequence in 2022.

We performed a comprehensive seismological analysis to characterize earthquake sources and seismicity along the Flores Thrust fault. As a result, we suggested that the earthquakes ruptured the major splay thrust fault in the zone and not in the basal detachment fault of the incipient subducting Flores sea oceanic crust. Furthermore, we highlighted the similarities of the thrusting rupture processes of Flores Thrust earthquakes, i.e., in their rupture initiation, speed, size, and static stress drops, and they are the type of thrust earthquakes that occur in a plate boundary.

In the Lombok segment, we discussed the relations of unusual, energetic seismicity in 2018 and the rupture behaviors of the significant cascading events. The mechanical discrepancy between complex fault ruptures and the spatiotemporal evolution of seismicity suggested an earthquake-volcano interaction and provides insights into how fault rupture behaves in such a fault-volcano environment. In addition, the westernmost and easternmost termination of seismicity extent indicated a strong segment barrier. In the Sumbawa segment, constructed finite-fault models of five moderate earthquakes suggest a non-overlap asperities area. The ruptures often propagated along-strike or down-dip directions with low static stress drops. We suggested that the cascade moderate-size asperities with low static stress drop may be the indication of the less mature feature of western Flores Thrust compared to its more developed eastern part. Alternatively, these earthquakes may act as asperities located at the down-dip patches of the Sumbawa segment, and its shallower section still has a potential of ruptures with MW > 7.0, similar to a historical earthquake in 1836. In the West Flores segment, the 2022 seismic sequence also ruptured the major splay thrust fault and also highlighted a complex deformation, but we confirmed that the 2003 normal faulting event was not located on the Flores Thrust; instead, it ruptured at the deeper depth, in the Flores Sea incipient subducted slab (intraslab event), below the Flores Thrust fault zone.

We proposed a new seismotectonic model and segmentation of the Flores Thrust fault zone based on our source models and seismicity analysis results. Our result indicated that the Flores Thrust is a complex discontinuous zone and that the three segments analyzed in this study behaved differently. In addition, we compiled earthquake dimensions for significant earthquakes along the Flores Thrust fault necessary to build an earthquake source scaling. This study provides a unified treatment of faulting mechanics and seismicity along the Flores Thrust fault and sheds light on the seismotectonic, earthquake nucleation, and seismicity activation in the Lombok, Sumbawa, and West Flores segments. It would be necessary for further seismic hazard analysis.
關鍵字(中) ★ 活動斷層
★ 餘震
★ 地栓
★ 地震
★ 有限斷層
★ 弗洛雷斯地震
★ 弗洛雷斯逆衝斷層
★ 前震
★ 震源重定位
★ 龍目島地震
★ 破裂
★ 地震活動度
★ 地震學
★ 松巴哇地震
關鍵字(英) ★ active fault
★ aftershock
★ asperities
★ earthquake
★ finite-fault
★ Flores earthquake
★ Flores Thrust
★ foreshock
★ hypocenter relocation
★ Lombok earthquake
★ rupture
★ seismicity
★ seismology
★ Sumbawa earthquake
論文目次 摘要 i
Abstract iii
Acknowledgments v
Table of Contents vi
List of Figures x
List of Tables xiii

Chapter I: INTRODUCTION 1
1.1 Motivation 1
1.2 Seismotectonic Background 3
1.2.1 Indonesia Region 3
1.2.2 Eastern Sunda-Banda Arc 4
1.2.3 The Flores Thrust 9
1.3 Seismicity along the Flores Thrust Fault 13
1.3.1 Historical Earthquakes 13
1.3.2 Seismicity 1964-2009 14
1.3.3 BMKG (IA) Seismic Network 15
1.3.4 Seismicity 2010-2018 15
1.3.5 Seismicity 2019-2022 17
1.3.6 Source Mechanisms 18
1.4 Research Questions 25
1.5 Purposes/Objectives 26
1.6 Brief Methodology 26
1.6.1 Finite-Fault Rupture Inversion 26
1.6.2 Seismicity Analysis 29
1.7 Outline/Structure of the Thesis 30

Chapter II: EARTHQUAKE SOURCE CHARACTERISTICS AT THE LOMBOK SEGMENT 31
2.1 Introduction 31
2.1.1 The 2018 Lombok Earthquake Sequence 31
2.1.2 Tectonic Setting 31
2.1.3 Overview on Studies of Lombok Earthquakes 34
2.2 Data 35
2.2.1 Earthquake Bulletin 35
2.2.2 Regional Broadband Seismic Data 35
2.2.3 Global Data 36
2.3 Methods 36
2.3.1 Hypocenter Relocation 36
2.3.2 Finite-fault Inversions 38
2.4 Analysis and Results 38
2.4.1 Relocation Result 39
2.4.2 Finite-fault Rupture Models 40
2.5 Discussions 46
2.5.1 Rupture Characteristics 46
2.5.2 Relations with Seismicity Evolution 49
2.6 Conclusions 59

Chapter III: EARTHQUAKE SOURCE CHARACTERISTICS AT THE SUMBAWA SEGMENT 60
3.1 Introduction 60
3.2 Data 61
3.3 Methods 64
3.4 Analysis and Results 67
3.4.1 2009 Event 68
3.4.2 2002 Event 74
3.4.3 2006 Event 75
3.4.4 2007-1 Event 75
3.4.5 2007-2 Event 79
3.4.6 Validation by Empirical Green’s Function Analysis 81
3.5 Discussions 81
3.5.1 Rupture Initiation 81
3.5.2 Rupture Speed 85
3.5.3 Rupture Size and Stress Drop 86
3.5.4 Architecture of the Flores Thrust 89
3.5.5 Two Kinematic Interpretations 90
3.5.6 Possible Seismic Gap 91
3.5.7 Implications for Regional Seismic and Tsunami Hazards 93
3.6 Conclusions 94

Chapter IV: EARTHQUAKE SOURCE CHARACTERISTICS AT THE WEST FLORES SEGMENT 96
4.1 Introduction 96
4.2 Data and Methods 99
4.2.1 Finite-fault Inversion for the 2003 Event 99
4.2.2 Seismicity Analysis during the 2022 Seismic Sequence 100
4.3 Results and Analysis 101
4.3.1 Finite-fault Model of the 2003 Event 101
4.3.2 The 2022 Seismic Sequence 105
4.4 Discussions 108
4.4.1 Source of the 2003 Event 108
4.4.2 View on Seismotectonic of the West Flores Segment 109
4.4.3 Foreshocks and Aftershocks 109
4.5 Conclusions 112

Chapter V: SUMMARY 113
5.1 Perspectives 113
5.1.1 Source Properties 116
5.1.2 Seismotectonic Implications 117
5.1.3 Improved Understanding of Seismicity 118
5.1.4 Seismic Hazard Implications 122
5.1.5 Comparisons with Other Back-arc Thrusts 122
5.2 Limitations 123
5.2.1 Data Limitations 123
5.2.2 Method Limitations 124
5.3 Suggestions and Future Works 125
5.3.1 Further Source Characterizations 125
5.3.2 Strike-slip Earthquakes 126
5.3.3 Westernmost Extension of Flores Thrust Fault 126
5.3.4 The December 14, 2021 earthquake 127
5.3.5 Seismic and Tsunami Hazard Assessment 128
5.4 Concluding Remarks 128
Bibliography 130
Appendixes 140
Appendix A 140
Appendix B 141
Appendix C 145
Appendix D 157
Appendix E 159
Appendix F 160
參考文獻 Abercrombie, R. E., 2015. Investigating uncertainties in empirical Green′s function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth 120(6), 4263-4277.
Afif, H., Nugraha, A. D., Muzli, M., Widiyantoro, S., Zulfakriza, Z., Wei, S., Sahara, D. P., Riyanto, A., Greenfield, T., Puspito, N. T., Priyono, A., Sasmi, A. T., Supendi, P., Ardianto, A., Syahbana, D. K., Rosalia, S., Cipta, A., Husni, Y. M., 2021. Local earthquake tomography of the source region of the 2018 Lombok earthquake sequence, Indonesia. Geophysical Journal International 226(3), 1814-1823.
Aki, K., 1965. Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthq. Res. Inst., Tokyo Univ. 43, 237-239.
Allmann, B. P., Shearer, P. M., 2009. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth 14, B01310.
Aoyagi, Y., Kimura, H., & Mizoguchi, K., 2020. Seismic velocity structure at the southern termination of the 2016 Kumamoto Earthquake rupture, Japan. Earth, Planets and Space 72(1), 1-14.
Arai, R., Kodaira, S., Yamada, T., Takahashi, T., Miura, S., Kaneda, Y., Nishizawa, A. Oikawa, M., 2017. Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab. Geophysical Research Letters 44(12), 6109-6115.
Bassin, C., Laske, G., Masters, G., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81, F897.
Beckers, J., Lay, T., 1995. Very broadband seismic analysis of the 1992 Flores, Indonesia, earthquake (Mw= 7.9). Journal of Geophysical Research: Solid Earth 100(B9), 18179-18193.
Beroza, G. C., Ellsworth, W. L., 1996. Properties of the seismic nucleation phase. Tectonophysics 261(1-3), 209-227.
Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., Puntodewo, S. S. O., Calais, E., 2003. Crustal motion in Indonesia from global positioning system measurements. Journal of Geophysical Research: Solid Earth 108(B8).
Bouchon, M., Durand, V., Marsan, D., Karabulut, H., Schmittbuhl, J., 2013. The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 299-302.
Breen, N. A., Silver, E.A., Roof, S., 1989. The Wetar back-arc thrust belt, eastern Indonesia: the effect of accretion against an irregularly shaped arc. Tectonics 8(1), 85-98.
Chen, P. F., Chen, Y. L., Su, P. L., Peng, Y. D., Chen, L. F., 2019. Understanding the 6 February 2018, Hualien earthquake sequence through catalog compilation. Terr. Atmos. Ocean. Sci. 30, 399-409.
Chen, P.F., Olavere, E.A., Wang, C.W., Bautista, B.C., Solidum Jr, R.U., Liang, W.T., 2015. Seismotectonics of Mindoro, Philippines. Tectonophysics 640, 70-79.

Chen, P. F., Su, P. L., Olavere, E. A., Solidum Jr, R. U., Huang, B. S., 2020. Relocation of the April 2017 Batangas, Philippines, earthquake sequence, with tectonic implications. Terr. Atmos. Ocean. Sci. 31, 273-282.
Chen, K. H., Bürgmann, R., Nadeau, R. M., 2013. Do earthquakes talk to each other? Triggering and interaction of repeating sequences at Parkfield. Journal of Geophysical Research: Solid Earth 118(1), 165-182.
Chen, K. H., Toda, S., Rau, R. J., 2008. A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research: Solid Earth 113(B2).
Cheng, J., Rong, Y., Magistrale, H., Chen, G., Xu, X., 2020. Earthquake rupture scaling relations for mainland China. Seismological Research Letters 91(1), 248-261.
Chounet, A., Vallée, M., Causse, M., Courboulex, F., 2018. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity. Tectonophysics 733, 148-158.
Choy, G. L., Kirby, S. H., 2004. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophysical Journal International 159(3), 991-1012.
Clements, B., Hall, R., Smyth, H. R., Cottam, M. A., 2009. Thrusting of a volcanic arc: a new structural model for Java. Petroleum Geoscience 15(2), 159-174.
Colombelli, S., Festa, G., Zollo, A., 2020. Early rupture signals predict the final earthquake size. Geophysical Journal International 223(1), 692-706.
Dahlen, F. A., Tromp, J., 1998. Theoretical Global Seismology. Princeton University Press.
Di Giacomo, D., Bondár, I., Storchak, D. A., Engdahl, E. R., Bormann, P., Harris, J., 2015. ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment. Physics of the Earth and Planetary Interiors 239, 33-47.
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors25(4), 297-356.
Ekström, G., Nettles, M., Dziewoński, A. M., 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200, 1-9.
Ellsworth, W. L., Beroza, G. C., 1995. Seismic evidence for an earthquake nucleation phase. Science 268(5212), 851-855.
Engdahl, E. R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C. G., Harris, J., Storchak, D. A., 2020. ISC-EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity. Earth and Space Science 7(1), e2019EA000897.
Felix, R. P., Hubbard, J. A., Bradley, K. E., Lythgoe, K. H., Li, L., Switzer, A. D., 2022. Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust. Natural Hazards and Earth System Sciences 22(5), 1665-1682.
Ferrario, M. F., 2019. Landslides triggered by multiple earthquakes: insights from the 2018 Lombok (Indonesia) events. Natural Hazards 98(2), 575-592.
Fuchs, F., Lupi, M., Miller, S. A., 2014. Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia. Geophysical Research Letters 41(12), 4185-4193.
Genrich, J. F., Bock, Y., McCaffrey, R., Calais, E., Stevens, C. W., Subarya, C., 1996. Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements. Tectonics 15(2), 288-295.
Gilbert, F., Dziewonski, A. M., 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 278(1280), 187-269.
Goes, S. D., Velasco, A. A., Schwartz, S. Y., Lay, T., 1993. The April 22, 1991, Valle de la Estrella, Costa Rica (Mw= 7.7) earthquake and its tectonic implications: A broadband seismic study. Journal of Geophysical Research: Solid Earth 98(B5), 8127-8142.
Gomberg, J., 2018. Unsettled earthquake nucleation. Nature Geoscience 11(7), 463-464.
Griffin, J., Nguyen, N., Cummins, P., Cipta, A., 2019. Historical earthquakes of the eastern Sunda Arc: Source mechanisms and intensity-based testing of Indonesia’s national seismic hazard assessment. Bulletin of the Seismological Society of America 109(1), 43-65.
Gulia, L., Rinaldi, A. P., Tormann, T., Vannucci, G., Enescu, B., Wiemer, S., 2018. The effect of a mainshock on the size distribution of the aftershocks. Geophysical Research Letters 45(24), 13-277.
Gulia, L., Wiemer, S., 2019. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574(7777), 193-199.
Gunawan, E., 2021. An assessment of earthquake scaling relationships for crustal earthquakes in Indonesia. Seismological Research Letters 92, 2490–2497.
Gunawan, E., Widiyantoro, S., 2019. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. Journal of Geodynamics 123, 49-54.
Gunawan, M. T., Kusnandar, R., Supendi, P., Nugraha, A. D., Puspito, N. T., Sahara, D. P., 2020. Analysis of swarm earthquakes around Mt. Agung Bali, Indonesia prior to November 2017 eruption using regional BMKG network. Geoscience Letters 7(1), 1-9.
Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics570, 1-41.
Hall, R., Spakman, W., 2015. Mantle structure and tectonic history of SE Asia. Tectonophysics 658, 14-45.
Hamilton, W. B., 1979. Tectonics of the Indonesian region (Vol. 1078). US Government Printing Office.
Hanks, T. C., Bakun, W. H., 2008. M-log A observations for recent large earthquakes. Bulletin of the Seismological Society of America 98(1), 490-494.
Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. Journal of Geophysical Research: Solid Earth 84(B5), 2348-2350.
Hao, J., Ji, C., Wang, W., Yao, Z., 2013. Rupture history of the 2013 Mw 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves. Geophysical Research Letters 40(20), 5371-5376.
Hao, J., Ji, C., Yao, Z., 2017. Slip history of the 2016 Mw 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophysical Research Letters 44(2), 743-750.
Hartzell, S., Liu, P., Mendoza, C., Ji, C., Larson, K. M., 2007. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake. Bulletin of the Seismological Society of America 97(6), 1911-1934.
Hayes, G. P., 2011. Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space 63(7), 529-534.
Hayes, G. P., 2017. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters 468, 94-100.
Helmberger, D. V., 1983. Theory and application of synthetic seismograms, In: Kanamori, H., Boschi, E. (Eds), Earthquakes: Observation Theory and Interpretation. North-Holland Publishing Company, pp. 174-222.
Hinschberger, F., Malod, J. A., Réhault, J. P., Villeneuve, M., Royer, J. Y., Burhanuddin, S., 2005. Late Cenozoic geodynamic evolution of eastern Indonesia. Tectonophysics 404(1-2), 91-118.
Huang, B. S., 2001. Evidence for azimuthal and temporal variations of the rupture propagation of the 1999 Chi-Chi, Taiwan Earthquake from dense seismic array observations. Geophysical Research Letters 28(17), 3377-3380.
Huang, B. S., Lee, S. J., Chen, Y. G., Jiang, J. S., 2008. Initial rupture processes of the 2006 Pingtung earthquake from near source strong-motion records. Terrestrial, Atmospheric & Oceanic Sciences 19(6).
Huang, H., Meng, L., Bürgmann, R., Wang, W., Wang, K., 2020. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters 551, 116582.
Hubbard, J., Barbot, S., Hill, E. M., Tapponnier, P., 2015. Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Science Reviews 141, 45-55.
Hutchings, S. J., Mooney, W. D., 2021. The seismicity of Indonesia and tectonic implications. Geochemistry, Geophysics, Geosystems 22(9), e2021GC009812.
Ide, S., 2019. Frequent observations of identical onsets of large and small earthquakes. Nature 573(7772), 112-116.
Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, M., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., Syahbana, A. J., 2020. Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra 36, 112-136.
Ji, C., Helmberger, D. V., Wald, D. J., Ma, K. F., 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth 108(B9), 2412.
Ji, C., Wald, D. J., Helmberger, D. V., 2002. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America 92(4), 1192-1207.
Kanamori, H., Anderson, D. L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America 65(5), 1073-1095.
Kanamori, H., Ye, L., Huang, B. S., Huang, H. H., Lee, S. J., Liang, W. T., Lin, Y. Y., Ma, K. F., Wu, Y. M., Yeh, T. Y., 2017. A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw= 6.4). Terr. Atmos. Ocean. Sci 28, 637-650.
Kao, H., Jian, P. R., Ma, K. F., Huang, B. S., Liu, C. C., 1998. Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision. Geophysical Research Letters 25(19), 3619-3622.
Kato, A., Ben-Zion, Y., 2021. The generation of large earthquakes. Nature Reviews Earth & Environment 2(1), 26-39.
Kato, A., Fukuda, J. I., Nakagawa, S., Obara, K., 2016. Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophysical Research Letters 43(17), 8945-8953.
Koulali, A., Susilo, S., McClusky, S., Meilano, I., Cummins, P., Tregoning, P., Lister, G., Efendi, J.,Syafi′i, M. A., 2016. Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc. Geophysical Research Letters 43(5), 1943-1949.
Langston, C. A., Helmberger, D. V., 1975. A procedure for modelling shallow dislocation sources. Geophysical Journal Internationa l42(1), 117-130.
Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., Rushing, T. M., 2012. Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth 117, B04311.
Lesage, P., Heap, M. J., Kushnir, A., 2018. A generic model for the shallow velocity structure of volcanoes. Journal of Volcanology and Geothermal Research 356, 114-126.
Letouzey, J., Werner, P., Marty, A., 1990. Fault reactivation and structural inversion. Back-arc and intraplate compressive deformations. Example of the eastern Sunda shelf (Indonesia). Tectonophysics 183(1-4), 341-362.
Lin, C. H., 2002. Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova 14(4), 281-287.
Lin, C. H., 2004. Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan. Geophysical Research Letters 31(13).
Lin, X., Chu, R., Zeng, X., 2019. Rupture processes and Coulomb stress changes of the 2017 Mw 6.5 Jiuzhaigou and 2013 Mw 6.6 Lushan earthquakes. Earth, Planets and Space 71(1), 1-15.
Liu, W., Yao, H., 2018. A new strategy of finite-fault inversion using multiscale waveforms and its application to the 2015 Gorkha, Nepal, earthquake. Bulletin of the Seismological Society of America 108(4), 1947-1961.
Lupi, M., De Gori, P., Valoroso, L., Baccheschi, P., Minetto, R., Mazzini, A., 2022. Northward migration of the Javanese volcanic arc along thrust faults. Earth and Planetary Science Letters 577, 117258.
Lythgoe, K., Muzli, M., Bradley, K., Wang, T., Nugraha, A. D.,Zulfakriza, Z., Widiyantoro, S., Wei, S., 2021. Thermal squeezing of the seismogenic zone controlled rupture of the volcano-rooted Flores Thrust. Science Advances 7(5), eabe2348.
Ma, K. F., Brodsky, E. E., Mori, J., Ji, C., Song, T. R. A., Kanamori, H., 2003. Evidence for fault lubrication during the 1999 Chi‐Chi, Taiwan, earthquake (Mw7.6). Geophysical Research Letters 30(5).
Ma, K. F., Chan, C. H., Stein, R. S., 2005. Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw= 7.6 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth 110(B5).
Mai, P. M., Beroza, G. C., 2000. Source scaling properties from finite-fault-rupture models. Bulletin of the Seismological Society of America 90(3), 604-615.
Manighetti, I., Mercier, A., De Barros, L., 2021. Fault trace corrugation and segmentation as a measure of fault structural maturity. Geophysical Research Letters 48, e2021GL095372.
McCaffrey, R., 1988. Active tectonics of the eastern Sunda and Banda arcs. Journal of Geophysical Research: Solid Earth 93(B12), 15163-15182.
McCaffrey, R., Nábělek, J., 1984. The geometry of back-arc thrusting along the eastern Sunda arc, Indonesia: Constraints from earthquake and gravity data. Journal of Geophysical Research: Solid Earth 89(B7), 6171-6179.
McCaffrey, R., Nábělek, J., 1987. Earthquakes, gravity, and the origin of the Bali Basin: An example of a nascent continental fold-and-thrust belt. Journal of Geophysical Research: Solid Earth 92(B1), 441-460.
Meier, M. A., Ampuero, J. P., Cochran, E., Page, M., 2021. Apparent earthquake rupture predictability. Geophysical Journal International 225(1), 657-663.
Melgar, D., Hayes, G. P., 2017. Systematic observations of the slip pulse properties of large earthquake ruptures. Geophysical Research Letters 44(19), 9691-9698.
Melgar, D., Hayes, G. P., 2019. Characterizing large earthquakes before rupture is complete. Science Advances5(5), eaav2032.
Morley, C. K., 1988. Out-of-sequence thrusts. Tectonics 7(3), 539-561.
Musson, R. M. W., 2012. A provisional catalogue of historical earthquakes in Indonesia. Geological Survey Edinburgh British Open Report OR/12/073, pp. 21.
Neely, J. S., Stein, S., Spencer, B. D., 2020. Large uncertainties in earthquake stress-drop estimates and their tectonic consequences. Seismological Research Letters 91(4), 2320-2329.
Newcomb, K. R., McCann, W. R., 1987. Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth 92(B1), 421-439.
Nishikawa, T., Matsuzawa, T., Ohta, K., Uchida, N., Nishimura, T., Ide, S., 2019. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science 365(6455), 808-813.
Noda, H., Lapusta, N., Kanamori, H., 2013. Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophysical Journal International 193(3), 1691-1712.
Nugroho, H., Harris, R., Lestariya, A. W., Maruf, B., 2009. Plate boundary reorganization in the active Banda Arc–continent collision: Insights from new GPS measurements. Tectonophysics 479(1-2), 52-65.
Perrin, C., Manighetti, I., Ampuero, J. P., Cappa, F., Gaudemer, Y., 2016. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth 121(5), 3666-3685.
Plafker, G., Ward, S. N., 1992. Back-arc thrust faulting and tectonic uplift along the Caribbean Sea coast during the April 22, 1991 Costa Rica earthquake. Tectonics 11(4), 709-718.
Porritt, R. W., Miller, M. S., O′Driscoll, L. J., Harris, C. W., Roosmawati, N., da Costa, L. T., 2016. Continent–arc collision in the Banda Arc imaged by ambient noise tomography. Earth and Planetary Science Letters 449, 246-258.
Pranantyo, I. R., Cummins, P. R., 2019. Multi-data-type source estimation for the 1992 Flores earthquake and tsunami. Pure and Applied Geophysics 176(7), 2969-2983.
Pranantyo, I. R., Heidarzadeh, M., Cummins, P. R., 2021. Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data. Geoscience Letters 8(1), 1-16.
Prieto, G.A., 2022. The Multitaper Spectrum Analysis Package in Python. Seismological Research Letters 93(3), 1922-1929.
Prieto, G. A., Parker, R. L., Vernon III, F. L., 2009. A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences 35(8), 1701-1710.
Priyono, A., Nugraha, A. D., Muzli, M., Ardianto, A., Aulia, A. N., Prabowo, B. S., Zulfakriza, Z., Rosalia, S., Sasmi, A. T., Afif, H., Sahara, D. P., Widiyantoro, S., Wei, S., Husni, Y. M., Sarjan, A. F. N., 2021. Seismic attenuation tomography from 2018 Lombok earthquakes, Indonesia. Frontiers in Earth Science 9, 191.
Protti, M., Schwartz, S. Y., 1994. Mechanics of back-arc deformation in Costa Rica: Evidence from an aftershock study of the April 22, 1991, Valle de la Estrella, Costa Rica, earthquake (Mw= 7.7). Tectonics 13(5), 1093-1107.
Regnier, M., Calmant, S., Pelletier, B., Lagabrielle, Y., Cabioch, G., 2003. The Mw 7.5 1999 Ambrym earthquake, Vanuatu: A back-arc intraplate thrust event. Tectonics 22(4).
Ryan, W. B., Carbotte, S. M., Coplan, J. O., O′Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F. and Bonczkowski, J., 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems 10(3).
Salman, R., Lindsey, E. O., Lythgoe, K. H., Bradley, K., Muzli, M., Yun, S. H., Chin, S. T., Tay, C. W. J., Costa, F., Wei, S., Hill, E. M., 2020. Cascading partial rupture of the Flores Thrust during the 2018 Lombok earthquake sequence, Indonesia. Seismological Research Letters 91(4), 2141-2151.
Sasmi, A. T., Nugraha, A. D., Muzli, M., Widiyantoro, S., Zulfakriza, Z., Wei, S., Sahara, D. P., Riyanto, A., Puspito, N. T., Priyono, A., Greenfield, T., Afif, H., Supendi, P., Daryono, D., Ardianto, A., Syahbana, D. K., Husni, Y. M., Prabowo, B. S., Sarjan, A. F. N., 2020. Hypocenter and magnitude analysis of aftershocks of the 2018 Lombok, Indonesia, earthquakes using local seismographic networks. Seismological Research Letters 91(4), 2152-2162.
Schmittbuhl, J., Karabulut, H., Lengliné, O., Bouchon, M., 2016. Seismicity distribution and locking depth along the Main Marmara Fault, Turkey. Geochemistry, Geophysics, Geosystems 17(3), 954-965.
Scholz, C. H., 2015. On the stress dependence of the earthquake b value. Geophysical Research Letters 42(5), 1399-1402.
Sharma, M. L., Wason, H. R., 1994. Occurrence of low stress drop earthquakes in the Garhwal Himalaya region. Physics of the Earth and Planetary Interiors 85(3-4), 265-272.
Shao, G., Ji, C., 2012. What the exercise of the SPICE source inversion validation BlindTest 1 did not tell you. Geophysical Journal International 189(1), 569-590.
Shao, G., Li, X., Ji, C., Maeda, T., 2011. Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, Planets and Space 63(7), 559-564.
Sianipar, D., Huang, B. S., Ma, K. F., Hsieh, M. C., Chen, P. F., Daryono, D., 2022. Similarities in the rupture process and cascading asperities between neighboring fault patches and seismic implications: The 2002–2009 Sumbawa (Indonesia) earthquakes with moment magnitudes of 6.2–6.6. Journal of Asian Earth Sciences 229, 105167.
Silver, E. A., Breen, N. A., Prasetyo, H., Hussong, D. M., 1986. Multibeam study of the Flores back-arc thrust belt, Indonesia. Journal of Geophysical Research: Solid Earth 91(B3), 3489-3500.
Silver, E. A., Reed, D., McCaffrey, R., Joyodiwiryo, Y., 1983. Back-arc thrusting in the eastern Sunda arc, Indonesia: A consequence of arc-continent collision. Journal of Geophysical Research: Solid Earth 88(B9), 7429-7448.
Suárez, G., Pardo, M., Domínguez, J., Ponce, L., Montero, W., Boschini, I., Rojas, W., 1995. The Limón, Costa Rica earthquake of April 22, 1991: Back-arc thrusting and collisional tectonics in a subduction environment. Tectonics 14(2), 518-530.
Supendi, P., Nugraha, A. D., Widiyantoro, S., Abdullah, C. I., Rawlinson, N., Cummins, P. R., Harris, C. W., Roosmawati, N., Miller, M. S., 2020a. Fate of Forearc lithosphere at arc-continent collision zones: Evidence from local earthquake tomography of the Sunda-Banda Arc Transition, Indonesia. Geophysical Research Letters 47(6), e2019GL086472.
Supendi, P., Nugraha, A. D., Widiyantoro, S., Pesicek, J. D., Thurber, C. H., Abdullah, C. I., Daryono, D., Wiyono, S. H., Shiddiqi, H. A., Rosalia, S., 2020b. Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International 221(3), 1845-1855.
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N.,Kowada, A., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters 70(1), 59-80.
Taymaz, T., Ganas, A., Yolsal-Çevikbilen, S., Vera, F., Eken, T., Erman, C., Keles, D., Kapetanidis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar, D.,Öcalan, T., 2021. Source mechanism and rupture process of the 24 January 2020 Mw 6.7 Doğanyol–Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations on the East Anatolian Fault Zone (Turkey). Tectonophysics 804, 228745.
ten Brink, U. S., Marshak, S., Bruña, J. L. G., 2009. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern Caribbean plate. Geological Society of America Bulletin 121(11-12), 1522-1536.
Thakur, P., Huang, Y., 2021. Influence of fault zone maturity on fully dynamic earthquake cycles. Geophysical Research Letters 48, e2021GL094679.
Tichelaar, B. W., Ruff, L. J., 1989. How good are our best models? Jackknifing, bootstrapping, and earthquake depth. Eos, Transactions American Geophysical Union 70(20), 593-606.
Tsimopoulou, V., Mikami, T., Hossain, T. T., Takagi, H., Esteban, M., Utama, N. A., 2020. Uncovering unnoticed small-scale tsunamis: field survey in Lombok, Indonesia, following the 2018 earthquakes. Natural Hazards 103, 2045-2070.
Twardzik, C., Ji, C., 2015. The Mw7.9 2014 intraplate intermediate-depth Rat Islands earthquake and its relation to regional tectonics. Earth and Planetary Science Letters 431, 26-35.
Utsu, T., Ogata, Y., 1995. The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth 43(1), 1-33.
Vallée, M., Douet, V., 2016. A new database of source time functions (STFs) extracted from the SCARDEC method. Physics of the Earth and Planetary Interiors 257, 149-157.
Waldhauser, F., Ellsworth, W. L., 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America 90(6), 1353-1368.
Walter, J. I., Chang, J. C., Dotray, P. J., 2017. Foreshock seismicity suggests gradual differential stress increase in the months prior to the 3 September 2016 Mw 5.8 Pawnee earthquake. Seismological Research Letters 88(4), 1032-1039.
Wang, C., Wang, X., Xiu, W., Zhang, B., Zhang, G., Liu, P., 2020. Characteristics of the seismogenic faults in the 2018 Lombok, Indonesia, earthquake sequence as revealed by inversion of InSAR measurements. Seismological Research Letters 91(2A), 733-744.
Wang, X., Xu, C., Xiao, Z., Peng, Y., 2022. Source model for buried thrust-dominated earthquakes using partial InSAR displacements: the 2018 Lombok, Indonesia, earthquake sequence. Geophysical Journal International 229, 1434-1447.
Wells, D. L., Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America84(4), 974-1002.
Wibowo, S. B., Hadmoko, D. S., Isnaeni, Y., Farda, N. M., Putri, A. F. S., Nurani, I. W., Supangkat, S. H., 2021. Spatio-temporal distribution of ground deformation due to 2018 Lombok earthquake series. Remote Sensing 13(11), 2222.
Widiyantoro, S., Fauzi, 2005. Note on seismicity of the Bali convergent region in the eastern Sunda Arc, Indonesia. Australian Journal of Earth Sciences 52(3), 379-383.
Widiyantoro, S., Pesicek, J. D., Thurber, C. H., 2011. Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geological Society, London, Special Publications 355(1), 139-155.
Wiemer, S., 2001. A software package to analyze seismicity: ZMAP. Seismological Research Letters 72(3), 373-382.
Woessner, J., Wiemer, S., 2005. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America 95(2), 684-698.
Yagi, Y., Okuwaki, R., Enescu, B., Kasahara, A., Miyakawa, A., Otsubo, M., 2016. Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth, Planets and Space 68(1), 1-6.
Yamanaka, Y., Kikuchi, M., 2003. Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth, Planets and Space 55(12), e21-e24.
Yang, X., Singh, S. C., Tripathi, A., 2020. Did the Flores back-arc thrust rupture offshore during the 2018 Lombok earthquake sequence in Indonesia?. Geophysical Journal International 221(2), 758-768.
Ye, L., Lay, T., Kanamori, H., Koper, K. D., 2013. Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science 341(6152), 1380-1384.
Ye, L., Lay, T., Kanamori, H., Rivera, L., 2016. Rupture characteristics of major and great (Mw≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth 121(2), 826-844.
Yen, Y. T., Ma, K. F., 2011. Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America 101(2), 464-481.
Yue, H., Zhang, Y., Ge, Z., Wang, T. Zhao, L., 2020. Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion. Science China Earth Sciences 63(4), 492-511.
Yuliastuti, Y., Setiadipura, T., Wicaksono, A. B., Alhakim, E. E., Suntoko, H., Sunarko, S., 2021. High-resolution probabilistic seismic hazard analysis of West Nusa Tenggara, Indonesia. Journal of Seismology 25, 937–948.
Zaccagnino, D., Telesca, L., Doglioni, C., 2022. Scaling properties of seismicity and faulting. Earth and Planetary Science Letters 584, 117511.
Zubaidah, T., Korte, M., Mandea, M., Hamoudi, M., 2014. New insights into regional tectonics of the Sunda–Banda Arcs region from integrated magnetic and gravity modelling. Journal of Asian Earth Sciences 80, 172-184.
指導教授 黃柏壽 馬國鳳 陳伯飛(Bor-Shouh Huang Kuo-Fong Ma Po-Fei Chen) 審核日期 2022-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明