參考文獻 |
Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Weather Rev., 137, 1805–1824, https://doi.org/10.1175/2008MWR2691.1.
Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Weather Rev., 135, 1090–1109, https://doi.org/10.1175/MWR3324.1.
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev., 132, 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
Brotzge, J. A., and Coauthors, 2020: A technical overview of the New York state mesonet standard network. J. Atmos. Ocean. Technol., 37, 1827–1845, https://doi.org/10.1175/JTECH-D-19-0220.1.
Caumont, O., V. Ducrocq, Ér. Wattrelot, G. Èv. Jaubert, and S. Pradier-Vabre, 2010: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 62, 173–187, https://doi.org/10.1111/j.1600-0870.2009.00430.x.
Caya, A., J. Sun, and C. Snyder, 2005: A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for. Mon. Weather Rev., 133, 3081–3094, https://doi.org/https://doi.org/10.1175/MWR3021.1.
Chang, S. F., J. Sun, Y. C. Liou, S. L. Tai, and C. Y. Yang, 2014: The influence of erroneous background, beam-blocking and microphysical non-linearity on the application of a four-dimensional variational Doppler radar data assimilation system for quantitative precipitation forecasts. Meteorol. Appl., 21, 444–458, https://doi.org/10.1002/met.1439.
——, Y. C. Liou, J. Sun, and S. L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038, https://doi.org/10.1175/JAS-D-15-0184.1.
Cheng, H. W., S. C. Yang, Y. C. Liou, and C. Sen Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. Sci. Online Lett. Atmos., 16, 97–103, https://doi.org/10.2151/SOLA.2020-017.
Chung, K. S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude convective storm by the assimilation of single-doppler radar observations. Mon. Weather Rev., 137, 4115–4135, https://doi.org/10.1175/2009MWR2731.1.
——, W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of situation-dependent background error covariances at the convective scale in the context of the ensemble Kalman filter. Mon. Weather Rev., 141, 3369–3387, https://doi.org/10.1175/MWR-D-12-00353.1.
Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic field. Mon. Wea. Rev., 124, 1767–1785.
Davis, C. A., and W. C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX. J. Atmos. Sci., 69, 521–537, https://doi.org/10.1175/JAS-D-11-0120.1.
Dimet, F. Le, and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38 A, 97–110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.
Do, P.-N., K.-S. Chung, P.-L. Lin, C.-Y. Ke, and S. M. Ellis, 2022: Assimilating Retrieved Water Vapor and Radar Data From NCAR S-PolKa: Performance and Validation Using Real Cases. Mon. Weather Rev., 1177–1199, https://doi.org/10.1175/mwr-d-21-0292.1.
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Weather Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107.
Ellis, S. M., and J. Vivekanandan, 2010: Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci., 45, 1–15, https://doi.org/10.1029/2009RS004280.
——, and ——, 2011: Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci., 46, https://doi.org/10.1029/2010RS004361.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fabry, F., and J. Sun, 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation. Mon. Weather Rev., 138, 242–255, https://doi.org/10.1175/2009MWR2883.1.
——, and V. Meunier, 2020: Why are radar data so difficult to assimilate skillfully? Mon. Weather Rev., 148, 2819–2836, https://doi.org/10.1175/MWR-D-19-0374.1.
Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi, 1997: Extraction of near-surface index of refraction using radar phase measurements from ground targets. IEEE Antennas Propag. Soc. AP-S Int. Symp., 4, 2625–2628, https://doi.org/10.1109/aps.1997.625552.
Feng, Y. C., and F. Fabry, 2018: Quantifying the error of radar-estimated refractivity by multiple elevation and dual-polarimetric data. J. Atmos. Ocean. Technol., 35, 1897–1911, https://doi.org/10.1175/JTECH-D-18-0008.1.
——, ——, and T. M. Weckwerth, 2016: Improving radar refractivity retrieval by considering the change in the refractivity profile and the varying altitudes of ground targets. J. Atmos. Ocean. Technol., 33, 989–1004, https://doi.org/10.1175/JTECH-D-15-0224.1.
——, H. W. Hsu, T. M. Weckwerth, P. L. Lin, Y. C. Liou, and T. C. C. Wang, 2021: The spatiotemporal characteristics of near-surface water vapor in a coastal region revealed from radar-derived refractivity. Mon. Weather Rev., 149, 2853–2874, https://doi.org/10.1175/MWR-D-20-0425.1.
Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Weather Rev., 142, 3326–3346, https://doi.org/10.1175/MWR-D-14-00025.1.
——, M. Xue, and D. J. Stensrud, 2013: The development of a hybrid 3DVAR-EnKF algorithm for storm-scale data assimilation. Adv. Meteorol., 2013, P7.4, https://doi.org/https://doi.org/10.1155/2013/512656.
Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity: Impact tests using OSSEs. J. Atmos. Ocean. Technol., 30, 2281–2302, https://doi.org/10.1175/JTECH-D-12-00038.1.
Ge, G., J. Gao, and M. Xue, 2013: Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method. Mon. Weather Rev., 141, 2759–2777, https://doi.org/10.1175/MWR-D-12-00193.1.
Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Weather Rev., 130, 2859–2873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.
——, and ——, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteorol., 43, 74–89, https://doi.org/10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 10–13, https://doi.org/10.1029/2002GL015311.
Ha, S. Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Weather Rev., 142, 1489–1508, https://doi.org/10.1175/MWR-D-13-00108.1.
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 128, 2905–2919, https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2.
Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Q. J. R. Meteorol. Soc., 137, 2124–2137, https://doi.org/10.1002/qj.877.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Houze, R. A., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. - Am. Meteorol. Soc., 70, 608–619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.
Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Weather Rev., 134, 675–698, https://doi.org/10.1175/MWR3092.1.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Jacques, A. A., J. D. Horel, E. T. Crosman, and F. L. Vernon, 2017: Tracking mesoscale pressure perturbations using the USArray transportable array. Mon. Weather Rev., 145, 3119–3142, https://doi.org/10.1175/MWR-D-16-0450.1.
Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Weather Rev., 143, 3087–3108, https://doi.org/10.1175/MWR-D-14-00345.1.
Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Weather Rev., 139, 1911–1931, https://doi.org/10.1175/2011MWR3428.1.
Kong, R., M. Xue, and C. Liu, 2018: Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments. Mon. Weather Rev., 146, 175–198, https://doi.org/10.1175/MWR-D-17-0164.1.
——, ——, ——, and Y. Jung, 2020: Comparisons of hybrid En3DVar with 3DVar and EnKF for radar data assimilation: Tests with the 10 may 2010 Oklahoma Tornado outbreak. Mon. Weather Rev., 149, 21–40, https://doi.org/10.1175/MWR-D-20-0053.1.
Lai, A., J. Gao, S. E. Koch, Y. Wang, S. Pan, A. O. Fierro, C. U. I. Chunguang, and M. I. N. Jinzhong, 2019: Assimilation of radar radial velocity, reflectivity, and pseudo–water vapor for convective-scale NWP in a variational framework. Mon. Weather Rev., 147, 2877–2900, https://doi.org/10.1175/MWR-D-18-0403.1.
Li, X., J. Ming, M. Xue, Y. Wang, and K. Zhao, 2015a: Implementation of a dynamic equation constraint based on the steady state momentum equations within the WRF hybrid ensemble-3DVar data assimilation system and test with radar T-TREC wind assimilation for tropical Cyclone Chanthu (2010). J. Geophys. Res. Atmos., 120, 4017–4039, https://doi.org/10.1002/2014JD022706.
Li, X., J. R. Mecikalski, J. Srikishen, B. Zavodsky, and W. A. Petersen, 2020: Assimilation of GPM Rain Rate Products With GSI Data Assimilation System for Heavy and Light Precipitation Events. J. Adv. Model. Earth Syst., 12, https://doi.org/10.1029/2019MS001618.
Li, Y., X. Wang Xuguang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble-3dvar system for the prediction of hurricane Ike (2008). Mon. Weather Rev., 140, 3507–3524, https://doi.org/10.1175/MWR-D-12-00043.1.
Liebe, H. J., and N. Telecommunications, 1985: An updated model for millimeter wave propagation in moist air. 20, 1069–1089.
Lindsey, D. T., D. Bikos, and L. Grasso, 2018: Using the GOES-16 split window difference to detect a boundary prior to cloud formation. Bull. Am. Meteorol. Soc., 99, 1541–1544, https://doi.org/10.1175/BAMS-D-17-0141.1.
Lindskog, M., K. Salonen, H. Järvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Weather Rev., 132, 1081–1092, https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.
Madaus, L. E., and G. J. Hakim, 2016: Observable surface anomalies preceding simulated isolated convective initiation. Mon. Weather Rev., 144, 2265–2284, https://doi.org/10.1175/MWR-D-15-0332.1.
Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165–166.
Miyoshi, T., and Coauthors, 2016: Big data assimilation revolutionizing severe weather prediction. Bull. Am. Meteorol. Soc., 97, 1347–1354, https://doi.org/10.1175/BAMS-D-15-00144.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237.
Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Weather Rev., 137, 1939–1953, https://doi.org/10.1175/2008MWR2725.1.
——, A. Caya, and I. Zawadzki, 2002: Short-term numerical forecasting of a shallow storms complex using bistatic and single-Doppler radar data. Weather Forecast., 17, 1211–1225, https://doi.org/10.1175/1520-0434(2002)017<1211:STNFOA>2.0.CO;2.
Pan, Y., and M. Wang, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China. Adv. Atmos. Sci., 36, 160–172, https://doi.org/10.1007/s00376-018-8087-5.
——, ——, and M. Xue, 2020: Impacts of Humidity Adjustment Through Radar Data Assimilation Using Cloud Analysis on the Analysis and Prediction of a Squall Line in Southern China. Earth Sp. Sci., 7, 1–19, https://doi.org/10.1029/2019EA000893.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1.
Sasaki, Y., 1958: An ObJective Analysis Based on the Variational Method. J. Meteorol. Soc. Japan. Ser. II, 36, 77–88, https://doi.org/10.2151/jmsj1923.36.3_77.
Shen, F., J. Min, and D. Xu, 2016: Assimilation of radar radial velocity data with the WRF Hybrid ETKF-3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res., 169, 127–138, https://doi.org/10.1016/j.atmosres.2015.09.019.
——, D. Xu, J. Min, Z. Chu, and X. Li, 2020: Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008). Atmos. Res., 234, 104771, https://doi.org/10.1016/j.atmosres.2019.104771.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Weather Rev., 131, 1663–1677, https://doi.org/10.1175//2555.1.
Sugimoto, S., N. Andrew Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Weather Rev., 137, 4011–4029, https://doi.org/10.1175/2009MWR2839.1.
Sun, J., 2006: Convective-scale assimilation of radar data: Progress and challenges. Q. J. R. Meteorol. Soc., 131, 3439–3463, https://doi.org/10.1256/qj.05.149.
——, and N. A. Crook, 1997a: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852, https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.
——, and ——, 1997b: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Weather Forecast., 16, 117–132, https://doi.org/10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.
Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Weather Rev., 136, 2364–2388, https://doi.org/10.1175/2007MWR2205.1.
——, and H. Wang, 2013: Radar data assimilation with WRF 4D-var. Part II: Comparison with 3D-var for a squall line over the U.S. great plains. Mon. Weather Rev., 141, 2245–2264, https://doi.org/10.1175/MWR-D-12-00169.1.
——, M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Weather Forecast., 25, 1715–1735, https://doi.org/10.1175/2010WAF2222336.1.
——, Y. Zhang, J. Ban, J. S. Hong, and C. Y. Lin, 2020: Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. Mon. Weather Rev., 148, 2211–2232, https://doi.org/10.1175/MWR-D-19-0337.1.
Tai, S. L., Y. C. Liou, J. Sun, S. F. Chang, and M. C. Kuo, 2011: Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the weather research and forecasting model: Real case studies during SoWMEX in Taiwan. Weather Forecast., 26, 975–992, https://doi.org/10.1175/WAF-D-11-00019.1.
Tao, W. K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys., 82, 97–137, https://doi.org/10.1007/s00703-001-0594-7.
Thiruvengadam, P., J. Indu, and S. Ghosh, 2020: Significance of 4DVAR Radar Data Assimilation in Weather Research and Forecast Model-Based Nowcasting System. 0–3 pp.
Tian, L., G. M. Heymsfield, L. Li, and R. C. Srivastava, 2007: Properties of light stratiform rain derived from 10- and 94-GHz airborne Doppler radars measurements. J. Geophys. Res. Atmos., 112, 1–12, https://doi.org/10.1029/2006JD008144.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 1789–1807.
Tsai, C. C., and K. S. Chung, 2020: Sensitivities of quantitative precipitation forecasts for typhoon Soudelor (2015) near landfall to polarimetric radar data assimilation. Remote Sens., 12, 1–23, https://doi.org/10.3390/rs12223711.
——, S. C. Yang, and Y. C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.21804.
Wang, C., and Coauthors, 2021: Assimilation of X-Band Phased-Array Radar Data With EnKF for the Analysis and Warning Forecast of a Tornadic Storm. J. Adv. Model. Earth Syst., 13, 1–19, https://doi.org/10.1029/2020MS002441.
Wang, H., J. Sun, S. Fan, and X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-var and its impact on prediction of four summertime convective events. J. Appl. Meteorol. Climatol., 52, 889–902, https://doi.org/10.1175/JAMC-D-12-0120.1.
Wattrelot, E., O. Caumont, and J. F. Mahfouf, 2014: Operational implementation of the 1D13D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Weather Rev., 142, 1852–1873, https://doi.org/10.1175/MWR-D-13-00230.1.
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Weather Rev., 128, 4017–4030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.
——, C. R. Pettet, F. Fabry, S. Park, M. A. LeMone, and J. W. Wilson, 2005: Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteorol., 44, 285–300, https://doi.org/10.1175/JAM-2204.1.
Wu, P.-Y., S.-C. Yang, C.-C. Tsai, and H.-W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of heavy rainfall event on 16th June 2008 in Taiwan. Mon. Weather Rev., 3631–3652, https://doi.org/10.1175/mwr-d-19-0319.1.
Wulfmeyer, V., P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, 2015: Reviews of Geophysics of water and energy cycles. Rev. Geophys., 819–895, https://doi.org/10.1002/2014RG000476.Received.
Xiao, Q., and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Weather Rev., 135, 3381–3404, https://doi.org/10.1175/MWR3471.1.
——, Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteorol., 44, 768–788, https://doi.org/10.1175/JAM2248.1.
Yang, S. C., M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009: Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model. Mon. Weather Rev., 137, 693–709, https://doi.org/10.1175/2008MWR2396.1.
——, Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction. Mon. Weather Rev., 148, 1075–1098, https://doi.org/10.1175/MWR-D-18-0418.1.
Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and E. Sato, 2018: Improving Short-Term Rainfall Forecasts by Assimilating Weather Radar Reflectivity Using Additive Ensemble Perturbations. J. Geophys. Res. Atmos., 123, 9047–9062, https://doi.org/10.1029/2018JD028723.
Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian oscillation. Bull. Am. Meteorol. Soc., 94, 1871–1891, https://doi.org/10.1175/BAMS-D-12-00157.1.
Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Weather Rev., 138, 517–538, https://doi.org/10.1175/2009MWR2925.1.
Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev., 132, 1238–1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhao, K., X. Li, M. Xue, B. J. D. Jou, and W. C. Lee, 2012: Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall. J. Geophys. Res. Atmos., 117, 1–20, https://doi.org/10.1029/2011JD017109.
Zhu, L., Y. Bao, G. P. Petropoulos, P. Zhang, F. Lu, Q. Lu, Y. Wu, and D. Xu, 2020: Temperature and humidity profiles retrieval in a plain area from Fengyun-3D/HIRAS sensor using a 1D-VAR assimilation scheme. Remote Sens., 12, 1–20, https://doi.org/10.3390/rs12030435.
Zuluaga, M. D., and R. A. Houze, 2013: Evolution of the population of precipitating convective systems over the equatorial Indian ocean in active phases of the Madden-Julian oscillation. J. Atmos. Sci., 70, 2713–2725, https://doi.org/10.1175/JAS-D-12-0311.1. |