博碩士論文 105621602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.142.194.124
姓名 杜芳宜(Do Thi Phuong Nghi)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 同化反演的水氣和雷達資料改善定量降水預報
(Improving Quantitative Precipitation Forecast by Assimilating the Retrieved Moisture and Radar Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 如何改進劇烈天氣系統之定量降水預報是數值預報持續關注的議題與挑戰。而水氣場在對流系統當中為相當重要的資訊。同化都卜勒風與回波資料對提升數值預報有相當程度的改善,但在調整水氣場以獲得最佳分析場與數值預報上有其限制。本論文旨在研究同化掃描式雷達所反演兩種不同類型的水氣資訊,包括 S-PolKa 雙波長反演的垂直剖面水氣與雷達折射指數反演的近地表二為水氣資訊。
本研究第一部分將S-PolKa反演得到低層降水系統周圍的垂直剖面水氣資訊,與雷達回波和都卜勒風一起進行同化。採用 WRF 局地系集轉換卡爾曼濾波資料同化系統,在 Dynamics of the Madden-Julian Oscillation Experiment (DYNAMO)觀測實驗的三個真實個案進行一系列實驗測試。同化時,濕度的垂直剖面被分為平均後之單點單一剖面和四個象限上分別提供水氣剖面資訊,並在 1) 與連續 2 小時的雷達資料和 2) 在第一小時單獨同化水氣資訊,然後在第二小時接著同化徑向風和回波。結果顯示,與僅同化雷達資料相比,額外同化水氣資訊顯著地改進了對流尺度的分析場,進而提升定量降水預報的表現。此外,策略上第一小時僅同化水氣資料,而後於第二小時同化徑向風和回波資料其結果呈現出最佳之分析場,且與其他實驗相比,定量降水預報的改進最大。而同化時若將水氣剖面分為四個象限在分析場和預報結果上會更加理想。
本論文的第二部分重點研究同化能代表地表附近水氣資訊的雷達折射指數。利用西南季風觀測實驗中的兩個真實個案,採用高解析度 WRF 局地系集轉換卡爾曼濾波器資料同化系統。測試兩組不同的實驗。在第一組實驗中,探討額外同化雷達折射指數反演水氣之影響。結果顯示,同化反演進地表之水氣除了調整水氣分布之外,也同時增強風場的輻合作用,改進定量降水預報的能力。此外,同化折射指數的影響,取決於背景場之情況,也就是在具有更廣泛折射指數分佈且偏乾背景水氣場中,效果尤為顯著。第二組實驗主要在測試天氣系統著陸前後同化折射指數的效益。結果顯示,降水系統登陸島上後,持續同化雷達折射率對短期預報具有優勢。此外,測試結果亦建議於天氣系統登陸之前便開始同化折射指數,能獲得最佳的定量降水預報表現,尤其在強降雨的區域更為顯著。
摘要(英) Improving the quantitative precipitation forecast is the key ongoing challenge in weather prediction. Despite the positive impact on the enhancement of numerical weather prediction, the assimilation of reflectivity and radial velocity cannot fully adjust the water vapor field to achieve an optimal short-term forecast. However, moisture information is proved to be critical for convection analysis and forecast. This thesis aims to investigate the additional assimilation of two different kinds of moisture data including the S-PolKa-retrieved water vapor and radar-retrieved refractivity.
In the first part of this dissertation, the S-PolKa-retrieved water vapor data which represents the environmental information outside the precipitation at the low level was assimilated with reflectivity and radial wind. The WRF local ensemble transform Kalman filter data assimilation system was employed to examine a series of experiments in three real cases of the Dynamics of the Madden-Julian Oscillation Experiment. The vertical profiles of humidity were thinned into one averaged and four-quadrant profiles and assimilated 1) with radar data for the entire 2 h and 2) alone in the first hour, followed by radial wind and reflectivity assimilation in the second hour. The results revealed that assimilating additional water vapor data more markedly improved the analysis at the convective scale, leading to more significant improvements in the rain forecast compared with assimilating radar data only. In addition, the strategy of assimilating only retrieved water vapor data in the first hour and radial wind and reflectivity data in the second hour achieved the optimal analysis, resulting in the most improvement in rain forecast compared with other experiments. Furthermore, assimilating moisture profiles into four quadrants achieved more accurate analyses and forecasts.
The second part of this dissertation focus on examining the assimilation of radar-retrieved refractivity which carries moisture information near the surface. Two real cases in the Southwest Monsoon Experiment were deployed with the high-resolution WRF local ensemble transform Kalman filter data assimilation system. Two different sets of experiments were investigated. In the first experimental group, the role of extra refractivity assimilation was investigated. The results indicated that additional refractivity assimilation improved the quantitative precipitation forecasting by generating the optimal moisture, temperature, and wind adjustment and enhancing the wind convergence. Moreover, the level impact of refractivity assimilation on the short-term forecast is markedly notable in dry-biased background moisture with broader refractivity distribution. The second experimental set was utilized for studying the refractivity assimilation before and after the weather system landed. The results revealed that assimilating radar refractivity continuously after the precipitation system landed on the island has advantages for the short-term forecast. Additionally, this study suggested starting assimilating refractivity before the weather system landed to obtain the optimal quantitative precipitation forecasting, particularly for heavy rainfall.
關鍵字(中) ★ 雷達同化
★ 水氣
★ 雷達折射指數
★ 水氣資訊同化
關鍵字(英) ★ radar assimilation
★ water vapor
★ radar refractivity
★ moisture assimilation
論文目次 中文摘要 i
Abstract ii
Acknowledgements iv
Contents v
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview of radar assimilation 1
1.2 Limitation of radar assimilation in moisture correction 3
1.3 Overview of assimilating moisture information based on radar 4
1.4 Motivation and goals of the study 5
1.5 Dissertation outline 7
Chapter 2. Assimilating Retrieved Water Vapor and Radar Data From NCAR S-PolKa: Performance and Validation Using Real Cases 8
2.1 Introduction 9
2.2 Assimilation system and data description 11
2.2.1 WRF-Local ensemble transform Kalman filter radar assimilation system 11
2.2.2 Model configuration 12
2.2.3 Radar observations 14
2.2.4 S-PolKa–retrieved water vapor density 14
2.2.5 Observation operator 15
2.3 Case description and experimental design 16
2.3.1 Description of the three study cases 16
2.3.2 Experimental design 18
2.4 Results of the analysis and forecast 23
2.4.1 Performance of the analysis 23
2.4.2 Performance of the short-term deterministic forecast 31
2.5 Summary and Conclusions 39
Chapter 3. Impact of Radar-Derived Refractivity Assimilation on the Quantitative Precipitation Forecast: Real Cases Study of SoWMEX 41
3.1 Introduction 42
3.2 Study cases and assimilation observations 44
3.2.1 The two heavy rainfall events of SoWMEX: 02 June and 14 June 2008 44
3.2.2 Observations for assimilation 46
3.3 Assimilation system and experimental design 49
3.3.1 Model configuration 49
3.3.2 WRF-Local ensemble transformed Kalman filter Radar Assimilation System 51
3.3.3 Observation operators 51
3.3.4 Experimental design 52
3.4 Results 55
3.4.1 Data and methods for performance verification 55
3.4.2 Results of the first experimental set 56
3.4.2.1 Case 1: IOP 4 56
a. Results of the analysis 56
b. Results of the forecast 64
3.4.2.2 Case 2: IOP 8 67
a. Results of the analysis 67
b. Results of the forecast 71
3.4.2.3 Comparison of the two cases 72
3.4.3 Results of the second experimental set 73
3.4.3.1 Assimilating refractivity before the precipitation system landed over the island (0300 UTC) 73
3.4.3.2 Assimilating refractivity after the precipitation system landed over the island (0400 UTC) 78
3.5 Summary and conclusions 80
Chapter 4 Conclusions and Future Work 82
4.1 General conclusions 82
4.2 Future Works 84
Bibliography 86
參考文獻 Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Weather Rev., 137, 1805–1824, https://doi.org/10.1175/2008MWR2691.1.
Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Weather Rev., 135, 1090–1109, https://doi.org/10.1175/MWR3324.1.
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev., 132, 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
Brotzge, J. A., and Coauthors, 2020: A technical overview of the New York state mesonet standard network. J. Atmos. Ocean. Technol., 37, 1827–1845, https://doi.org/10.1175/JTECH-D-19-0220.1.
Caumont, O., V. Ducrocq, Ér. Wattrelot, G. Èv. Jaubert, and S. Pradier-Vabre, 2010: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 62, 173–187, https://doi.org/10.1111/j.1600-0870.2009.00430.x.
Caya, A., J. Sun, and C. Snyder, 2005: A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for. Mon. Weather Rev., 133, 3081–3094, https://doi.org/https://doi.org/10.1175/MWR3021.1.
Chang, S. F., J. Sun, Y. C. Liou, S. L. Tai, and C. Y. Yang, 2014: The influence of erroneous background, beam-blocking and microphysical non-linearity on the application of a four-dimensional variational Doppler radar data assimilation system for quantitative precipitation forecasts. Meteorol. Appl., 21, 444–458, https://doi.org/10.1002/met.1439.
——, Y. C. Liou, J. Sun, and S. L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038, https://doi.org/10.1175/JAS-D-15-0184.1.
Cheng, H. W., S. C. Yang, Y. C. Liou, and C. Sen Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. Sci. Online Lett. Atmos., 16, 97–103, https://doi.org/10.2151/SOLA.2020-017.
Chung, K. S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude convective storm by the assimilation of single-doppler radar observations. Mon. Weather Rev., 137, 4115–4135, https://doi.org/10.1175/2009MWR2731.1.
——, W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of situation-dependent background error covariances at the convective scale in the context of the ensemble Kalman filter. Mon. Weather Rev., 141, 3369–3387, https://doi.org/10.1175/MWR-D-12-00353.1.
Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic field. Mon. Wea. Rev., 124, 1767–1785.
Davis, C. A., and W. C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX. J. Atmos. Sci., 69, 521–537, https://doi.org/10.1175/JAS-D-11-0120.1.
Dimet, F. Le, and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38 A, 97–110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.
Do, P.-N., K.-S. Chung, P.-L. Lin, C.-Y. Ke, and S. M. Ellis, 2022: Assimilating Retrieved Water Vapor and Radar Data From NCAR S-PolKa: Performance and Validation Using Real Cases. Mon. Weather Rev., 1177–1199, https://doi.org/10.1175/mwr-d-21-0292.1.
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Weather Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107.
Ellis, S. M., and J. Vivekanandan, 2010: Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci., 45, 1–15, https://doi.org/10.1029/2009RS004280.
——, and ——, 2011: Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci., 46, https://doi.org/10.1029/2010RS004361.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fabry, F., and J. Sun, 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation. Mon. Weather Rev., 138, 242–255, https://doi.org/10.1175/2009MWR2883.1.
——, and V. Meunier, 2020: Why are radar data so difficult to assimilate skillfully? Mon. Weather Rev., 148, 2819–2836, https://doi.org/10.1175/MWR-D-19-0374.1.
Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi, 1997: Extraction of near-surface index of refraction using radar phase measurements from ground targets. IEEE Antennas Propag. Soc. AP-S Int. Symp., 4, 2625–2628, https://doi.org/10.1109/aps.1997.625552.
Feng, Y. C., and F. Fabry, 2018: Quantifying the error of radar-estimated refractivity by multiple elevation and dual-polarimetric data. J. Atmos. Ocean. Technol., 35, 1897–1911, https://doi.org/10.1175/JTECH-D-18-0008.1.
——, ——, and T. M. Weckwerth, 2016: Improving radar refractivity retrieval by considering the change in the refractivity profile and the varying altitudes of ground targets. J. Atmos. Ocean. Technol., 33, 989–1004, https://doi.org/10.1175/JTECH-D-15-0224.1.
——, H. W. Hsu, T. M. Weckwerth, P. L. Lin, Y. C. Liou, and T. C. C. Wang, 2021: The spatiotemporal characteristics of near-surface water vapor in a coastal region revealed from radar-derived refractivity. Mon. Weather Rev., 149, 2853–2874, https://doi.org/10.1175/MWR-D-20-0425.1.
Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Weather Rev., 142, 3326–3346, https://doi.org/10.1175/MWR-D-14-00025.1.
——, M. Xue, and D. J. Stensrud, 2013: The development of a hybrid 3DVAR-EnKF algorithm for storm-scale data assimilation. Adv. Meteorol., 2013, P7.4, https://doi.org/https://doi.org/10.1155/2013/512656.
Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity: Impact tests using OSSEs. J. Atmos. Ocean. Technol., 30, 2281–2302, https://doi.org/10.1175/JTECH-D-12-00038.1.
Ge, G., J. Gao, and M. Xue, 2013: Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method. Mon. Weather Rev., 141, 2759–2777, https://doi.org/10.1175/MWR-D-12-00193.1.
Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Weather Rev., 130, 2859–2873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.
——, and ——, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteorol., 43, 74–89, https://doi.org/10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 10–13, https://doi.org/10.1029/2002GL015311.
Ha, S. Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Weather Rev., 142, 1489–1508, https://doi.org/10.1175/MWR-D-13-00108.1.
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 128, 2905–2919, https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2.
Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Q. J. R. Meteorol. Soc., 137, 2124–2137, https://doi.org/10.1002/qj.877.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Houze, R. A., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. - Am. Meteorol. Soc., 70, 608–619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.
Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Weather Rev., 134, 675–698, https://doi.org/10.1175/MWR3092.1.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Jacques, A. A., J. D. Horel, E. T. Crosman, and F. L. Vernon, 2017: Tracking mesoscale pressure perturbations using the USArray transportable array. Mon. Weather Rev., 145, 3119–3142, https://doi.org/10.1175/MWR-D-16-0450.1.
Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Weather Rev., 143, 3087–3108, https://doi.org/10.1175/MWR-D-14-00345.1.
Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Weather Rev., 139, 1911–1931, https://doi.org/10.1175/2011MWR3428.1.
Kong, R., M. Xue, and C. Liu, 2018: Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments. Mon. Weather Rev., 146, 175–198, https://doi.org/10.1175/MWR-D-17-0164.1.
——, ——, ——, and Y. Jung, 2020: Comparisons of hybrid En3DVar with 3DVar and EnKF for radar data assimilation: Tests with the 10 may 2010 Oklahoma Tornado outbreak. Mon. Weather Rev., 149, 21–40, https://doi.org/10.1175/MWR-D-20-0053.1.
Lai, A., J. Gao, S. E. Koch, Y. Wang, S. Pan, A. O. Fierro, C. U. I. Chunguang, and M. I. N. Jinzhong, 2019: Assimilation of radar radial velocity, reflectivity, and pseudo–water vapor for convective-scale NWP in a variational framework. Mon. Weather Rev., 147, 2877–2900, https://doi.org/10.1175/MWR-D-18-0403.1.
Li, X., J. Ming, M. Xue, Y. Wang, and K. Zhao, 2015a: Implementation of a dynamic equation constraint based on the steady state momentum equations within the WRF hybrid ensemble-3DVar data assimilation system and test with radar T-TREC wind assimilation for tropical Cyclone Chanthu (2010). J. Geophys. Res. Atmos., 120, 4017–4039, https://doi.org/10.1002/2014JD022706.
Li, X., J. R. Mecikalski, J. Srikishen, B. Zavodsky, and W. A. Petersen, 2020: Assimilation of GPM Rain Rate Products With GSI Data Assimilation System for Heavy and Light Precipitation Events. J. Adv. Model. Earth Syst., 12, https://doi.org/10.1029/2019MS001618.
Li, Y., X. Wang Xuguang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble-3dvar system for the prediction of hurricane Ike (2008). Mon. Weather Rev., 140, 3507–3524, https://doi.org/10.1175/MWR-D-12-00043.1.
Liebe, H. J., and N. Telecommunications, 1985: An updated model for millimeter wave propagation in moist air. 20, 1069–1089.
Lindsey, D. T., D. Bikos, and L. Grasso, 2018: Using the GOES-16 split window difference to detect a boundary prior to cloud formation. Bull. Am. Meteorol. Soc., 99, 1541–1544, https://doi.org/10.1175/BAMS-D-17-0141.1.
Lindskog, M., K. Salonen, H. Järvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Weather Rev., 132, 1081–1092, https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.
Madaus, L. E., and G. J. Hakim, 2016: Observable surface anomalies preceding simulated isolated convective initiation. Mon. Weather Rev., 144, 2265–2284, https://doi.org/10.1175/MWR-D-15-0332.1.
Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165–166.
Miyoshi, T., and Coauthors, 2016: Big data assimilation revolutionizing severe weather prediction. Bull. Am. Meteorol. Soc., 97, 1347–1354, https://doi.org/10.1175/BAMS-D-15-00144.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237.
Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Weather Rev., 137, 1939–1953, https://doi.org/10.1175/2008MWR2725.1.
——, A. Caya, and I. Zawadzki, 2002: Short-term numerical forecasting of a shallow storms complex using bistatic and single-Doppler radar data. Weather Forecast., 17, 1211–1225, https://doi.org/10.1175/1520-0434(2002)017<1211:STNFOA>2.0.CO;2.
Pan, Y., and M. Wang, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China. Adv. Atmos. Sci., 36, 160–172, https://doi.org/10.1007/s00376-018-8087-5.
——, ——, and M. Xue, 2020: Impacts of Humidity Adjustment Through Radar Data Assimilation Using Cloud Analysis on the Analysis and Prediction of a Squall Line in Southern China. Earth Sp. Sci., 7, 1–19, https://doi.org/10.1029/2019EA000893.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1.
Sasaki, Y., 1958: An ObJective Analysis Based on the Variational Method. J. Meteorol. Soc. Japan. Ser. II, 36, 77–88, https://doi.org/10.2151/jmsj1923.36.3_77.
Shen, F., J. Min, and D. Xu, 2016: Assimilation of radar radial velocity data with the WRF Hybrid ETKF-3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res., 169, 127–138, https://doi.org/10.1016/j.atmosres.2015.09.019.
——, D. Xu, J. Min, Z. Chu, and X. Li, 2020: Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008). Atmos. Res., 234, 104771, https://doi.org/10.1016/j.atmosres.2019.104771.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Weather Rev., 131, 1663–1677, https://doi.org/10.1175//2555.1.
Sugimoto, S., N. Andrew Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Weather Rev., 137, 4011–4029, https://doi.org/10.1175/2009MWR2839.1.
Sun, J., 2006: Convective-scale assimilation of radar data: Progress and challenges. Q. J. R. Meteorol. Soc., 131, 3439–3463, https://doi.org/10.1256/qj.05.149.
——, and N. A. Crook, 1997a: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852, https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.
——, and ——, 1997b: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Weather Forecast., 16, 117–132, https://doi.org/10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.
Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Weather Rev., 136, 2364–2388, https://doi.org/10.1175/2007MWR2205.1.
——, and H. Wang, 2013: Radar data assimilation with WRF 4D-var. Part II: Comparison with 3D-var for a squall line over the U.S. great plains. Mon. Weather Rev., 141, 2245–2264, https://doi.org/10.1175/MWR-D-12-00169.1.
——, M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Weather Forecast., 25, 1715–1735, https://doi.org/10.1175/2010WAF2222336.1.
——, Y. Zhang, J. Ban, J. S. Hong, and C. Y. Lin, 2020: Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. Mon. Weather Rev., 148, 2211–2232, https://doi.org/10.1175/MWR-D-19-0337.1.
Tai, S. L., Y. C. Liou, J. Sun, S. F. Chang, and M. C. Kuo, 2011: Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the weather research and forecasting model: Real case studies during SoWMEX in Taiwan. Weather Forecast., 26, 975–992, https://doi.org/10.1175/WAF-D-11-00019.1.
Tao, W. K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys., 82, 97–137, https://doi.org/10.1007/s00703-001-0594-7.
Thiruvengadam, P., J. Indu, and S. Ghosh, 2020: Significance of 4DVAR Radar Data Assimilation in Weather Research and Forecast Model-Based Nowcasting System. 0–3 pp.
Tian, L., G. M. Heymsfield, L. Li, and R. C. Srivastava, 2007: Properties of light stratiform rain derived from 10- and 94-GHz airborne Doppler radars measurements. J. Geophys. Res. Atmos., 112, 1–12, https://doi.org/10.1029/2006JD008144.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 1789–1807.
Tsai, C. C., and K. S. Chung, 2020: Sensitivities of quantitative precipitation forecasts for typhoon Soudelor (2015) near landfall to polarimetric radar data assimilation. Remote Sens., 12, 1–23, https://doi.org/10.3390/rs12223711.
——, S. C. Yang, and Y. C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.21804.
Wang, C., and Coauthors, 2021: Assimilation of X-Band Phased-Array Radar Data With EnKF for the Analysis and Warning Forecast of a Tornadic Storm. J. Adv. Model. Earth Syst., 13, 1–19, https://doi.org/10.1029/2020MS002441.
Wang, H., J. Sun, S. Fan, and X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-var and its impact on prediction of four summertime convective events. J. Appl. Meteorol. Climatol., 52, 889–902, https://doi.org/10.1175/JAMC-D-12-0120.1.
Wattrelot, E., O. Caumont, and J. F. Mahfouf, 2014: Operational implementation of the 1D13D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Weather Rev., 142, 1852–1873, https://doi.org/10.1175/MWR-D-13-00230.1.
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Weather Rev., 128, 4017–4030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.
——, C. R. Pettet, F. Fabry, S. Park, M. A. LeMone, and J. W. Wilson, 2005: Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteorol., 44, 285–300, https://doi.org/10.1175/JAM-2204.1.
Wu, P.-Y., S.-C. Yang, C.-C. Tsai, and H.-W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of heavy rainfall event on 16th June 2008 in Taiwan. Mon. Weather Rev., 3631–3652, https://doi.org/10.1175/mwr-d-19-0319.1.
Wulfmeyer, V., P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, 2015: Reviews of Geophysics of water and energy cycles. Rev. Geophys., 819–895, https://doi.org/10.1002/2014RG000476.Received.
Xiao, Q., and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Weather Rev., 135, 3381–3404, https://doi.org/10.1175/MWR3471.1.
——, Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteorol., 44, 768–788, https://doi.org/10.1175/JAM2248.1.
Yang, S. C., M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009: Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model. Mon. Weather Rev., 137, 693–709, https://doi.org/10.1175/2008MWR2396.1.
——, Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction. Mon. Weather Rev., 148, 1075–1098, https://doi.org/10.1175/MWR-D-18-0418.1.
Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and E. Sato, 2018: Improving Short-Term Rainfall Forecasts by Assimilating Weather Radar Reflectivity Using Additive Ensemble Perturbations. J. Geophys. Res. Atmos., 123, 9047–9062, https://doi.org/10.1029/2018JD028723.
Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian oscillation. Bull. Am. Meteorol. Soc., 94, 1871–1891, https://doi.org/10.1175/BAMS-D-12-00157.1.
Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Weather Rev., 138, 517–538, https://doi.org/10.1175/2009MWR2925.1.
Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev., 132, 1238–1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhao, K., X. Li, M. Xue, B. J. D. Jou, and W. C. Lee, 2012: Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall. J. Geophys. Res. Atmos., 117, 1–20, https://doi.org/10.1029/2011JD017109.
Zhu, L., Y. Bao, G. P. Petropoulos, P. Zhang, F. Lu, Q. Lu, Y. Wu, and D. Xu, 2020: Temperature and humidity profiles retrieval in a plain area from Fengyun-3D/HIRAS sensor using a 1D-VAR assimilation scheme. Remote Sens., 12, 1–20, https://doi.org/10.3390/rs12030435.
Zuluaga, M. D., and R. A. Houze, 2013: Evolution of the population of precipitating convective systems over the equatorial Indian ocean in active phases of the Madden-Julian oscillation. J. Atmos. Sci., 70, 2713–2725, https://doi.org/10.1175/JAS-D-12-0311.1.
指導教授 鍾高陞 林沛練(Kao-Shen Chung Pay-Liam Lin) 審核日期 2022-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明