博碩士論文 105690001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.144.100.197
姓名 薛郁欣(YU-HSIN HSUEH)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 溫室氣體二氧化碳與氧化亞氮之釋出與變動
(On the variabilities and emissions of the greenhouse gases, CO2 and N2O)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CO2 和 N2O 是兩種重要的溫室氣體 (GHG),濃度遠小於CO2的 N2O,其溫室效應潛力卻與 CO2 相當;自工業時代之後,兩者受人為活動直接或間接的影響,在大氣濃度上,都以非線性、且遠高於百萬年以來的速度增加。前人從排放清冊與氣候系統模式結果比對後,發現有出入,而推測自然生態系統可能影響氣體濃度。此兩種氣體參與碳和氮循環,各自與相互的作用機制會受到氣候變化而產生回饋反應。這項回饋機制則具有區域與時間上的變異,且各式生態系統都未被充分的了解,因此全球各地釋出氣體量尚難以完整預估。

文起兩個主軸,首先探討長時期的大氣CO2濃度是否帶有生態系統的變動訊號。將東南亞地方尺度的溫室氣體排放量、與太平洋西部區域的遙感探測中所得知的大氣濃度、加以比對,探討其不同頻度的變動來源。大氣CO2濃度隨氣候的年間模式而有季節變動,符合生物生長經光合作用固碳所致。但長期的低頻度訊號則有一段明顯增加幅度,不符合當時台灣或東亞區域人為CO2釋出清冊的穩定趨勢。此低頻的CO2濃度與區域尺度氣候震盪似乎相符,推測受到聖嬰與太平洋十年振盪 (Pacific Decadal Oscillation) 的影響改變CO2濃度。這項在亞洲副熱帶地區觀察結果與現今推估模式有些微落差;證明有如氣候震盪等的未知過程並未被完整了解,顯示長期且全面觀測CO2的重要性。

第二個主題則以N2O之釋出機制進行探討。在進行溫室之土壤培養與田間農業施作環境下進行觀察後,研究顯示N2O釋出經由銨氧化與真菌脫硝作用為主。其釋出量對應於 N 投入量,有非線性(溫室)或線性(田間)變化;而添加高量肥料也加強脫硝作用。雙季輪作稻米的田地釋出量N2O較輪作稻米-花生田的釋出的N2O更多,顯示受肥料、淹/排水、土壤擾動、作物殘體效應等影響。以同位素圖譜與定量推測N2O釋出來源包括化學肥料與埋入的作物殘體。因此推測硝化菌在有機氮的存在下,可能從銨-硝酸鹽-直接轉化成N2,因而減少N2O形成。另一方面CO2的釋出量並不完全對應於 N 投入量,但可能與埋入植體類型與時間有關。推測當碳氮比降低,硝化菌與脫硝細菌作用增強,礦質化作用促進有機質降解,N2O釋出減少,CO2釋出卻較高。

本研究試圖以大氣氣體濃度與其同位素比值,來辨識造成濃度變化的回饋作用。由於生態系統產出的氣體帶有穩定同位素訊號,在原產物的基質界定之後,能判定產生之機制,由此建立機制與通量的關係。未來若能結合大氣溫室氣體之穩定同位素的自然豐量度與遙感探測方法,連續觀察溫室氣體濃度與同位素比值改變差異,推知大尺度生物-地理-化學特徵資訊,即時分析連續時空尺度的回饋作用,提供同化分析中所需參數,而增進溫室氣體的預測模式。
摘要(英) CO2 and N2O are two important greenhouse gases, presenting significant radiative forcing. The two gases in the atmosphere increase at alarming rates due mainly to anthropogenic activities. Yet, an accurate projection of their concentrations in time and space remains challenging because of a complex interplay between anthropogenic emissions, biospheric responses, and climatic variabilities. The concentrations and surface emissions of CO2 and N2O at various spatial and temporal are thus examined. For CO2, the atmospheric level is found to fluctuate, possessing climatic inter-annual variabilities, such as Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO). The analysis shows for the first time an intimate connection of the regional CO2 concentration to the climatic oscillation induced by the PDO. The decadal signal, however, is not reproduced by the state-of-the-art data assimilation system, CarbonTacker, suggesting a gap in our knowledge of the modulation of carbon cycling systems and climate.

For N2O, the emissions at the laboratory chamber and agriculture field scales are explored. It is found that N2O is produced as the fertilizer rate increases through the co-occurrence of several microbial N2O production pathways, with nitrification and/or fungal denitrification as the dominant processes responsible for N2O emissions. Besides this, dominant signatures of denitrification by bacteria and denitrifier are observed in an N2O emission episode in intermediate urea-N levels in laboratory chamber setting. The signature of N2O consumption by reduction could be traced to declining emissions in treatment with high urea levels. In agriculture field setting, it was also elucidated that the ammonium sulfate and urea combined gave rise to N2O in the agricultural field under a double rice cropping system through aforementioned processes. In a rice-peanut rotation system, however, fewer synthetic fertilizers were transformed into N2O and were likely mediated after amending peanut residue in the soil.

In short, the study deepens our knowledge of natural and anthropogenic forcings and responses to the levels of CO2 and N2O in the atmosphere and presents a probable method combining stable isotopic analysis and remote sensing technology to detect gas concentration dynamics. This methodology illustrates how environmental changes incur the emission of CO2 and N2O in space and time, which then enables us to assess the process and scale of the feedback between carbon and nitrogen cycles. Aid with advanced technology, on-site monitoring is possible and can provide real-time information for assimilation between databases in predicting the dynamics of greenhouse gases.
關鍵字(中) ★ 營養鹽碳氮循環
★ 趨勢與氣候訊號分析
★ 穩定同位素分析
★ 溫室土壤孵育
★ 田間農業系統尺度測量
關鍵字(英) ★ carbon and nitrogen cycles
★ trend and climate signal analyses
★ stable isotope analyses
★ soil incubation
★ agriculture field scale measurements
論文目次 Abstract i
Preface v
Acknowledgements vi
Table of Contents vii
List of Figures x
List of Tables xiv
Explanation of Abbreviations and Symbols xvi
Chapter I. Introduction 1
Chapter II. East Asian CO2 level change caused by Pacific Decadal Oscillation 7
Abstract . 8
II.1 Introduction 9
II.2 Materials and methods 11
II.2.1 Ground-based measurements 11
II.2.2 Spaceborne measurements 11
II.2.3 CarbonTracker model data 13
II.2.4 Statistical trend analysis 14
II.3 Results 15
II.4 Discussion 21
II.5.1 Anthropogenic emission trend 21
II.5.2 Climatic dynamics in PDO 23
II.5.3 Modulation of PDO in regions with respect to concurrent CO2 27
II.5.4 PDO influences to ecosystem responses 30
II.5 Conclusions 31
II.6 Acknowledgements 32
II.7 Appendices 33

Chapter III Isotopic assessment of soil N2O emission from a sub-tropical agricultural soil under varying N-inputs 39
Abstract 40
III.1 Introduction 41
III.2 Methodology 44
III.2.1 Experimental setup 44
III.2.2 Soil N2O sampling 45
III.2.3 Measurement of N2O emission and isotopic compositions 45
III.2.4 Soil sampling 47
III.2.5 Ammonium analysis 48
III.2.6 Nitrate analysis 49
III.2.7 Isotope mapping approach 50
III.2.8 Statistical Analysis 51
III.3.1 Results 52
III.3.2 Variation of soil N2O emissions 52
III.3.3 Isotopic composition of soil N2O 54
III.3.4 Variation in concentration and isotopic composition of soil NH4+ and NO3- 57
III.3.5 Isotope mapping 61
III.4 Discussions 64
III.4.1 Effect of N addition on soil N2O emissions and soil- N 64
III.4.2 Isotopic fingerprint of N2O from agricultural soils 66
III.4.3 Microbial sources of soil N2O emissions 67
III.5 Conclusions 70
III.6 Acknowledgements 71
III.7 Appendices 72
Chapter IV Enhanced nitrification and emission of nitrous oxide due to fertilization and crop residue management 90
Abstract 91
IV.1 Introduction 92
IV.2 Methods 96
IV.2.1 Study site 96
IV.2.2 Soil environment: Temperature, redox potential, and moisture 99
IV.2.3 Experimental design 100
IV.2.4 Stable isotopologues analysis 102
IV.2.5 Gas analyses: Stable isotope ratio analyses 103
IV.2.6 Elemental analysis of rice straw 103
IV.2.7 Measurement and calculations of N2O emissions 104
IV.2.8 Statistical analysis 107
IV.3 Methods 107
IV.3.1 N2O fluxes and water levels for LL and LU systems 107
IV.3.2 Isotopic composition of substrate in the soil 110
IV.3.3 Stable isotopic values of soil-emitted N2O 112
IV.3.4 Sources of N2O 116
IV.3.5 Isotope mapping approach (Isomap) 119
IV.3.6 Soil moisture condition & nutrient content 123
IV.3.7 Emission of CO2 and its relation to N2O 125
IV.4 Discussions 129
IV.4.1 N2O flux was boosted with fertilization but the flux was moderated by water status 129
IV.4.2 Differences between LL and LU systems in N2O emissions 130
IV.4.3 Process responsible for the formation of N2O is ammonium oxidation 131
IV.4.4 Hydrological condition and the redox potential changes in N2O formation 133
IV.4.5 Greenhouse versus field observation 134
IV.5 Conclusions 135
IV.6 Acknowledgements 136
IV.7 Appendices 137
V. Summary 154
VI. References 160
參考文獻 Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F.A. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue-Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutiérrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Treguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Techincal summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, Eds. Cambridge University Press, pp. 33-144, doi:10.1017/9781009157896.002.
Akiyama, H., Yan, X., & Yagi, K. (2006). Estimations of emission factors for fertilizer-induced direct N 2 O emissions from Acton, S.D., Baggs, E.M., 2011. Interactions between N application rate, CH4 oxidation and N2O production in soil. Biogeochemistry 103, 15–26. https://doi.org/10.1007/s10533-010-9442-5
Akiyama, H., Yan, X., Yagi, K., 2006. Estimations of emission factors for fertilizer-induced direct N 2 O emissions from agricultural soils in Japan: Summary of available data. Soil Science and Plant Nutrition 52, 774–787. https://doi.org/10.1111/j.1747-0765.2006.00097.x
Aldossari, N., Ishii, S., 2021. Fungal denitrification revisited – Recent advancements and future opportunities. Soil Biology and Biochemistry 157, 108250. https://doi.org/10.1016/j.soilbio.2021.108250
Allison, F.E., Kefauver, M., Roller, E.M., 1953. Ammonium fixation in soils. Soil Science Society of America Journal 17, 107. https://doi.org/10.2136/sssaj1953.03615995001700020006x
Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F.A. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue-Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutiérrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Treguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021. Techincal summary. In Climate Change 2021: The Physical Science Basis., Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Ashfold, M.J., Pyle, J.A., Robinson, A.D., Meneguz, E., Nadzir, M.S.M., Phang, S.M., Samah, A.A., Ong, S., Ung, H.E., Peng, L.K., Yong, S.E., Harris, N.R.P., 2015. Rapid transport of East Asian pollution to the deep tropics. Atmos. Chem. Phys. 15, 3565–3573. https://doi.org/10.5194/acp-15-3565-2015
Augustin, J., Merbach, W., Rogasik, J., 1998. Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biology and Fertility of Soils 28, 1–4. https://doi.org/10.1007/s003740050455
Ballantyne, A.P., Alden, C.B., Miller, J.B., Tans, P.P., White, J.W.C., 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72. https://doi.org/10.1038/nature11299
Barford, C.C., Montoya, J.P., Altabet, M.A., Mitchell, R., 1999. Steady-state nitrogen isotope effects of N 2 and N 2 O production in Paracoccus denitrificans. Appl Environ Microbiol 65, 989–994. https://doi.org/10.1128/AEM.65.3.989-994.1999
Barkan, E., Luz, B., 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19, 3737–3742. https://doi.org/10.1002/rcm.2250
Bateman, A.S., Kelly, S.D., 2007. Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies 43, 237–247. https://doi.org/10.1080/10256010701550732
Bateman, A.S., Kelly, S.D., Jickells, T.D., 2005. Nitrogen isotope relationships between crops and fertilizer: Implications for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agric. Food Chem. 53, 5760–5765. https://doi.org/10.1021/jf050374h
Bedard-Haughn, A., van Groenigen, J.W., van Kessel, C., 2003. Tracing 15N through landscapes: potential uses and precautions. Journal of Hydrology 272, 175–190. https://doi.org/10.1016/S0022-1694(02)00263-9
Belder, P., Bouman, B.A.M., Cabangon, R., Guoan, L., Quilang, E.J.P., Yuanhua, L., Spiertz, J.H.J., Tuong, T.P., 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management 65, 193–210. https://doi.org/10.1016/j.agwat.2003.09.002
Berg, I.A., 2011. Ecological aspects of the distribution of different autotrophic CO 2 fixation pathways. Appl Environ Microbiol 77, 1925–1936. https://doi.org/10.1128/AEM.02473-10
Beyer, J.C., 2014. Greenhouse gas exchange of organic soils in Northwest Germany: effects of organic soil cultivation, agricultural land use and restoration. Treibhausgas-Austausch organischer Böden in Nordwest-Deutschland: Effekte von Bodenbearbeitung, landwirtschaftlicher Nutzung und Wiedervernässung organischer Böden.
Bhattacharyya, P., Roy, K.S., Neogi, S., Dash, P.K., Nayak, A.K., Mohanty, S., Baig, M.J., Sarkar, R.K., Rao, K.S., 2013. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Science of The Total Environment 461–462, 601–611. https://doi.org/10.1016/j.scitotenv.2013.05.035
Bol, R., Toyoda, S., Yamulki, S., Hawkins, J.M.B., Cardenas, L.M., Yoshida, N., 2003. Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Commun. Mass Spectrom. 17, 2550–2556. https://doi.org/10.1002/rcm.1223
Bongiovanni, M.D., Lobartini, J.C., 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation. Geoderma 136, 660–665. https://doi.org/10.1016/j.geoderma.2006.05.002
Boshers, D.S., Granger, J., Tobias, C.R., Böhlke, J.K., Smith, R.L., 2019. Constraining the oxygen isotopic composition of nitrate produced by nitrification. Environ. Sci. Technol. 53, 1206–1216. https://doi.org/10.1021/acs.est.8b03386
Bouwman, A.F., Boumans, L.J.M., Batjes, N.H., 2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles 16, 6-1-6–13. https://doi.org/10.1029/2001GB001811
Bruhwiler, L., Basu, S., Butler, J.H., Chatterjee, A., Dlugokencky, E., Kenney, M.A., McComiskey, A., Montzka, S.A., Stanitski, D., 2021. Observations of greenhouse gases as climate indicators. Climatic Change 165, 12. https://doi.org/10.1007/s10584-021-03001-7
Bruhwiler, L.M.P., Michalak, A.M., Peters, W., Baker, D.F., Tans, P., 2005. An improved Kalman Smoother for atmospheric inversions. Atmos. Chem. Phys. 5, 2691–2702. https://doi.org/10.5194/acp-5-2691-2005
Bruhwiler, L.M.P., Michalak, A.M., Tans, P.P., 2011. Spatial and temporal resolution of carbon flux estimates for 1983–2002. Biogeosciences 8, 1309–1331. https://doi.org/10.5194/bg-8-1309-2011
Bruland, G.L., MacKenzie, R.A., 2010. Nitrogen source tracking with δ 15 N content of coastal wetland plants in Hawaii. J. Environ. Qual. 39, 409–419. https://doi.org/10.2134/jeq2009.0005
Brust, G.E., 2019. Management Strategies for Organic Vegetable Fertility, in: Safety and Practice for Organic Food. Elsevier, pp. 193–212. https://doi.org/10.1016/B978-0-12-812060-6.00009-X
Buchen, C., Lewicka‐Szczebak, D., Flessa, H., Well, R., 2018. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules. Rapid Commun Mass Spectrom 32, 1053–1067. https://doi.org/10.1002/rcm.8132
Buchen, C., Well, R., Helfrich, M., Fuß, R., Kayser, M., Gensior, A., Benke, M., Flessa, H., 2017. Soil mineral N dynamics and N2O emissions following grassland renewal. Agriculture, Ecosystems & Environment 246, 325–342. https://doi.org/10.1016/j.agee.2017.06.013
Buchwald, C., Casciotti, K.L., 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nature Geosci 6, 308–313. https://doi.org/10.1038/ngeo1745
Buchwald, C., Casciotti, K.L., 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol. Oceanogr. 55, 1064–1074. https://doi.org/10.4319/lo.2010.55.3.1064
Burger, M., Jackson, L.E., 2003a. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry 35, 29–36. https://doi.org/10.1016/S0038-0717(02)00233-X
Burger, M., Jackson, L.E., 2003b. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry 35, 29–36. https://doi.org/10.1016/S0038-0717(02)00233-X
Burke, I.C., Bontti, E.E., Barrett, J.E., Lowe, P.N., Lauenroth, W.K., Riggle, R., 2013. Impact of labile and recalcitrant carbon treatments on available nitrogen and plant communities in a semiarid ecosystem. Ecological Applications 23, 537–545. https://doi.org/10.1890/12-0015.1
Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y., Peltier, G., 2020. Algal photosynthesis converts nitric oxide into nitrous oxide. Proc. Natl. Acad. Sci. U.S.A. 117, 2704–2709. https://doi.org/10.1073/pnas.1915276117
Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans. R. Soc. B 368, 20130122. https://doi.org/10.1098/rstb.2013.0122
Butterbach-Bahl, K., Sander, B.O., Pelster, D., Díaz-Pinés, E., 2016. Quantifying Greenhouse Gas Emissions from Managed and Natural Soils, in: Rosenstock, T.S., Rufino, M.C., Butterbach-Bahl, K., Wollenberg, L., Richards, M. (Eds.), Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer International Publishing, Cham, pp. 71–96. https://doi.org/10.1007/978-3-319-29794-1_4
Byrne, K., Chojnicki, B., Christensen, T.R., Drösler, M., Freibauer, A., Friborg, T., Frolking, S., Lindroth, A., Mailhammer, J., Malmer, N., Selin, P., Turunen, J., 2004. EU peatlands: Current carbon stocks and trace gas fluxes, Concerted Action CarboEurope-GHG. GeoBiosphere Science Centre, Lund, Sweden.
Cao, Y., Tian, Y., Yin, B., Zhu, Z., 2013. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research 147, 23–31. https://doi.org/10.1016/j.fcr.2013.03.015
Casciotti, K.L., Böhlke, J.K., McIlvin, M.R., Mroczkowski, S.J., Hannon, J.E., 2007. Oxygen Isotopes in nitrite: Analysis, calibration, and equilibration. Anal. Chem. 79, 2427–2436. https://doi.org/10.1021/ac061598h
Casciotti, K.L., McIlvin, M., Buchwald, C., 2010. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol. Oceanogr. 55, 753–762. https://doi.org/10.4319/lo.2010.55.2.0753
Cassman, K.G., Dobermann, A., Sta Cruz, P.C., Gines, G.C., Samson, M.I., Descalsota, J.P., Alcantara, J.M., Dizon, M.A., Olk, D.C., 1996. Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant and Soil 182, 267–278.
Cassman, K.G., Peng, S., Olk, D.C., Ladha, J.K., Reichardt, W., Dobermann, A., Singh, U., 1998. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Research 56, 7–39. https://doi.org/10.1016/S0378-4290(97)00140-8
Castañeda, A.R., Bouman, B.A.M., Peng, S., Visperas, R.M., 2002. The potential of aerobic rice to reduce water use in water-scarce irrigated lowlands in the tropics, in: Bouman, B., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P., Ladha, J.K. (Eds.), Water-Wise Rice Production. IRRI ; Plant Research International, Metro Manila, Philippines : [Wageningen], pp. 165–176.
Castellano, M.J., Schmidt, J.P., Kaye, J.P., Walker, C., Graham, C.B., Lin, H., Dell, C.J., 2010. Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape: CONTROLS ON N2O FLUX. Global Change Biology 16, 2711–2720. https://doi.org/10.1111/j.1365-2486.2009.02116.x
Chadwick, D.R., Cardenas, L., Misselbrook, T.H., Smith, K.A., Rees, R.M., Watson, C.J., McGeough, K.L., Williams, J.R., Cloy, J.M., Thorman, R.E., Dhanoa, M.S., 2014. Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments: N 2 O chamber methodology. Eur J Soil Sci 65, 295–307. https://doi.org/10.1111/ejss.12117
Chadwick, D.R., Cardenas, L.M., Dhanoa, M.S., Donovan, N., Misselbrook, T., Williams, J.R., Thorman, R.E., McGeough, K.L., Watson, C.J., Bell, M., Anthony, S.G., Rees, R.M., 2018. The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of The Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152
Chahine, M.T., Chen, L., Dimotakis, P., Jiang, X., Li, Q., Olsen, E.T., Pagano, T., Randerson, J., Yung, Y.L., 2008. Satellite remote sounding of mid-tropospheric CO 2. Geophys. Res. Lett. 35, L17807. https://doi.org/10.1029/2008GL035022
Chao, C.-C., 1995. The N2O emission from paddy soil: Effects of rice rhizosphere and inorganic nitrogen fertilizer (Government Report No. NSC84-2321- B- 005–013). National Chung-Hsing University, Department of Soil Environment Sciences.
Chao, W.-L., Chao, C.-C., 2008. Evaluation of soil physical and chemical properties after receiving continuous organic farming practice for seventeen years. Journal of the Agricultural Association of Taiwan 9, 270–291. https://doi.org/10.6730/JAAT.200806_9(3).0006
Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., Bernoux, M., 2007. Soils, a sink for N2O? A review. Global Change Biol 13, 1–17. https://doi.org/10.1111/j.1365-2486.2006.01280.x
Chatterjee, A., Gierach, M.M., Sutton, A.J., Feely, R.A., Crisp, D., Eldering, A., Gunson, M.R., O’Dell, C.W., Stephens, B.B., Schimel, D.S., 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 358, eaam5776. https://doi.org/10.1126/science.aam5776
Chen, C., Lin, M., Guo, H., Chiang, C., Liu, T., Chu, C., 2000. Impact assessment of shifts of land use on soil organic carbon storage of cultivated land in Taiwan. Soil and Environment (Taiwan) 3, 363–378.
Chen, C.-L., Guo, H.-Y., Chu, C.-L., Liu, T.-S., 2005. Soil properties baseline survey for LTER sites (Government Report No. PW9611-1494; 94Ag-Tech- 8.1.3- Ag-C2). Taiwan Agriculture Research Institute, Taiwan.
Chen, H., Mothapo, N.V., Shi, W., 2015. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb Ecol 69, 180–191. https://doi.org/10.1007/s00248-014-0488-0
Chen, H., Mothapo, N.V., Shi, W., 2014. The significant contribution of fungi to soil N2O production across diverse ecosystems. Applied Soil Ecology 73, 70–77. https://doi.org/10.1016/j.apsoil.2013.08.011
Chen, H., Yin, C., Fan, X., Ye, M., Liang, Y., 2021. Effect of P availability on straw-induced priming effect was mainly regulated by fungi in croplands. Appl Microbiol Biotechnol 105, 9403–9418. https://doi.org/10.1007/s00253-021-11691-3
Chou, C.-H., Chiang, Y.-C., Cheng, H.-H., Farrow, F.O., 1982. Transformation of 15N-enriched fertilizer nitrogen during rice straw decomposition in submerged soil. Botanical Bulletin of Academia Sinica 23, 119–133.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., Hong, G.-J., 2016. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – Implication of aerosol aging during long-range transport. Atmospheric Environment 137, 101–112. https://doi.org/10.1016/j.atmosenv.2016.03.042
Chung, C.-H., You, C.-F., Hsu, S.-C., Liang, M.-C., 2019. Sulfur isotope analysis for representative regional background atmospheric aerosols collected at Mt. Lulin, Taiwan. Sci Rep 9, 19707. https://doi.org/10.1038/s41598-019-56048-z
Conway, T.J., Tans, P.P., Waterman, L.S., Thoning, K.W., Kitzis, D.R., Masarie, K.A., Zhang, N., 1994. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res. 99, 22831. https://doi.org/10.1029/94JD01951
Couwenberg, J., Thiele, A., Tanneberger, F., Augustin, J., Bärisch, S., Dubovik, D., Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A., Joosten, H., 2011. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89. https://doi.org/10.1007/s10750-011-0729-x
Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., Mack, M.C., McLauchlan, K.K., Michelsen, A., Nardoto, G.B., Pardo, L.H., Peñuelas, J., Reich, P.B., Schuur, E.A.G., Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M., Wright, I.J., 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980–992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craswell, E., Datta, S., Obcemea, W., Hartantyo, M., 1981. Time and mode of nitrogen fertilizer application to tropical wetland rice. Fertilizer Research 2, 247–259. https://doi.org/10.1007/BF01050197
Crevoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., Scott, N.A., 2009b. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 9, 4797–4810. https://doi.org/10.5194/acp-9-4797-2009
Crisp, D., Atlas, R.M., Breon, F.-M., Brown, L.R., Burrows, J.P., Ciais, P., Connor, B.J., Doney, S.C., Fung, I.Y., Jacob, D.J., Miller, C.E., O’Brien, D., Pawson, S., Randerson, J.T., Rayner, P., Salawitch, R.J., Sander, S.P., Sen, B., Stephens, G.L., Tans, P.P., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Yung, Y.L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, D., Schroll, S., 2004. The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research 34, 700–709. https://doi.org/10.1016/j.asr.2003.08.062
Crisp, D., Pollock, H.R., Rosenberg, R., Chapsky, L., Lee, R.A.M., Oyafuso, F.A., Frankenberg, C., O’Dell, C.W., Bruegge, C.J., Doran, G.B., Eldering, A., Fisher, B.M., Fu, D., Gunson, M.R., Mandrake, L., Osterman, G.B., Schwandner, F.M., Sun, K., Taylor, T.E., Wennberg, P.O., Wunch, D., 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81. https://doi.org/10.5194/amt-10-59-2017
Curiel Yuste, J., Baldocchi, D.D., Gershenson, A., Goldstein, A., Misson, L., Wong, S., 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biol 13, 2018–2035. https://doi.org/10.1111/j.1365-2486.2007.01415.x
Darwish, O.H., Persaud, N., Martens, D.C., 1995. Effect of long-term application of animal manure on physical properties of three soils. Plant Soil 176, 289–295. https://doi.org/10.1007/BF00011793
de Araújo, A.C., Ometto, J.P.H.B., Dolman, A.J., Kruijt, B., Waterloo, M.J., Ehleringer, J.R., 2008. Implications of CO2; pooling on δ13supC of ecosystem respiration and leaves in Amazonian forest. Biogeosciences 5, 779–795. https://doi.org/10.5194/bg-5-779-2008
De Datta, S.K., Trevitt, A.C.F., Freney, J.R., Obcemea, W.N., Real, J.G., Simpson, J.R., 1989. Measuring Nitrogen Losses from Lowland Rice Using Bulk Aerodynamic and Nitrogen-15 Balance Methods. Soil Science Society of America Journal 53, 1275–1281. https://doi.org/10.2136/sssaj1989.03615995005300040047x
De Gryze, S., Six, J., Brits, C., Merckx, R., 2005. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biology and Biochemistry 37, 55–66. https://doi.org/10.1016/j.soilbio.2004.07.024
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553–597. https://doi.org/10.1002/qj.828
Deng, M.-H., Shi, X.-J., Tian, Y.-H., Yin, B., Zhang, S.-L., Zhu, Z.-L., Kimura, S.D., 2012. Optimizing Nitrogen Fertilizer Application for Rice Production in the Taihu Lake Region, China. Pedosphere 22, 48–57. https://doi.org/10.1016/S1002-0160(11)60190-2
Denk, T.R.A., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., Kiese, R., Wolf, B., 2017. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry 105, 121–137. https://doi.org/10.1016/j.soilbio.2016.11.015
Denman, K. L., 2007. Climate Change 2007: The Physical Science Basis, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, pp. 499–587.
Dou, F., Soriano, J., Tabien, R.E., Chen, K., 2016. Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE 11, e0150549. https://doi.org/10.1371/journal.pone.0150549
Dowdell, R.J., Smith, K.A., Crees, R., Restall, S.W.F., 1972. Field studies of ethylene in the soil atmosphere-equipment and preliminary results. Soil Biology and Biochemistry 4, 325–331. https://doi.org/10.1016/0038-0717(72)90028-4
Dworkin, I., 2011. Data from: Evidence for canalization of Distal-less function in the leg of Drosophila melanogaster. https://doi.org/10.5061/DRYAD.8376
FAO 2001. Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. International Fertilizer Industry Association. Food and Agriculture Organization of the United Nations. Rome, 2001. ISBN 92-5-104698-1. http://www.fao.org/3/y2780e/y2780e00.htm
Fan, J.-S., 2012. Dynamic changes of carbon flux in paddy rice ecosystems. National Chung Hsing University, Taichung, Taiwan.
Fehling, C., 2012. Mechanistic insights from the 15 N-site preference of nitrous oxide utilizing high resolution near-infrared cw cavity ringdown spectroscopy and density functional theory calculations.
Feigin, A., Shearer, G., Kohl, D.H., Commoner, B., 1974. The amount and nitrogen‐15 content of nitrate in soil profiles from two central Illinois fields in a corn‐soybean rotation. Soil Sci. Soc. Am. j. 38, 465–471. https://doi.org/10.2136/sssaj1974.03615995003800030026x
Feng, Y., Chen, X., Tung, K.-K., 2020. ENSO diversity and the recent appearance of Central Pacific ENSO. Clim Dyn 54, 413–433. https://doi.org/10.1007/s00382-019-05005-7
Fernández-Luqueño, F., Reyes-Varela, V., Martínez-Suárez, C., Reynoso-Keller, R.E., Méndez-Bautista, J., Ruiz-Romero, E., López-Valdez, F., Luna-Guido, M.L., Dendooven, L., 2009. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Science of The Total Environment 407, 4289–4296. https://doi.org/10.1016/j.scitotenv.2009.04.016
Flessa, H., Wild, Klemisch, Pfadenhauer, 1998. Nitrous oxide and methane fluxes from organic soils under agriculture. European Journal of Soil Science 49, 327–335. https://doi.org/10.1046/j.1365-2389.1998.00156.x
Foscari, A., Leonarduzzi, G., Incerti, G., 2021. N uptake, assimilation and isotopic fractioning control δ15N dynamics in plant DNA: A heavy labelling experiment on Brassica napus L. PLoS ONE 16, e0247842. https://doi.org/10.1371/journal.pone.0247842
Franzluebbers, A.J., 2022. Root‐zone soil organic carbon enrichment is sensitive to land management across soil types and regions. Soil Science Soc of Amer J 86, 79–90. https://doi.org/10.1002/saj2.20346
Fukuda, R., Ogawa, H., Nagata, T., Koike, I., 1998. Determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Applied and environmental microbiology 64, 3352–8.
Goldberg, S.D., Knorr, K.-H., Gebauer, G., 2008. N2O concentration and isotope signature along profiles provide deeper insight into the fate of N2O in soils†. Isotopes in Environmental and Health Studies 44, 377–391. https://doi.org/10.1080/10256010802507433
Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W., Watson, S.W., 1980. Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40, 526–532. https://doi.org/10.1128/aem.40.3.526-532.1980
Granger, J., Wankel, S.D., 2016. Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc. Natl. Acad. Sci. U.S.A. 113. https://doi.org/10.1073/pnas.1601383113
Griffith, D.W.T., Parkes, S.D., Haverd, V., Paton-Walsh, C., Wilson, S.R., 2009. Absolute calibration of the Intramolecular site preference of 15N fractionation in Tropospheric N2O by FT-IR Spectroscopy. Anal. Chem. 81, 2227–2234. https://doi.org/10.1021/ac802371c
Grimme, H., 1989. Changes of nutrient concentration in the soil solution and of nutrient status under different cropping systems in Southern Nigeria, in: van der Heide, J. (Ed.), Nutrient Management for Food Crop Production in the Tropical Farming Systems. Institute for Soil Fertility, Haren, The Netherlands & Universitas Brawijaya, Malang, Indonesia, Malang, Indonesia, pp. 171–185.
Groffman, P.M., Altabet, M.A., Böhlke, J.K., Butterbach-Bahl, K., David, M.B., Firestone, M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A., 2006. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecological Applications 16, 2091–2122. https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296. https://doi.org/10.1038/nature06592
Guan, B.T., Wright, W.E., Chung, C.-H., Chang, S.-T., 2012. ENSO and PDO strongly influence Taiwan spruce height growth. Forest Ecology and Management 267, 50–57. https://doi.org/10.1016/j.foreco.2011.11.028
Guha, T., Lin, C.T., Bhattacharya, S.K., Mahajan, A.S., Ou-Yang, C.-F., Lan, Y.-P., Hsu, S.C., Liang, M.-C., 2017. Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in Central Taiwan. Atmospheric Environment 154, 53–69. https://doi.org/10.1016/j.atmosenv.2017.01.036
Guo, H.-Y., Liu, T.-S., Chu, C.-L., Chiang, C.-F., 2005. Soil properties of the arable lands in Yunling, Chiayi, and Tainan. Research Technical Bulletin of TainanTDistrict Agricultural Research and Extension Station 3–23. https://doi.org/10.29559/zhwhgx.200510.0002
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M., Ohgaito, R., Ito, Akinori, Yamazaki, D., Okajima, H., Ito, Akihiko, Takata, K., Ogochi, K., Watanabe, S., Kawamiya, M., 2020. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244. https://doi.org/10.5194/gmd-13-2197-2020
Hayatsu, M., 1993. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil Science and Plant Nutrition 39, 219–226. https://doi.org/10.1080/00380768.1993.10416993
Hayatsu, M., Tago, K., Saito, M., 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition 54, 33–45. https://doi.org/10.1111/j.1747-0765.2007.00195.x
Haynes, R.J., 1996. Nitrification. In: Haynes, R.J. (Ed.), Mineral nitrogen in the plant–soil system. Academic Press, New York, USA, pp. 127–165.
Heinrich, V.H.A., Dalagnol, R., Cassol, H.L.G., Rosan, T.M., de Almeida, C.T., Silva Junior, C.H.L., Campanharo, W.A., House, J.I., Sitch, S., Hales, T.C., Adami, M., Anderson, L.O., Aragão, L.E.O.C., 2021. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat Commun 12, 1785. https://doi.org/10.1038/s41467-021-22050-1
Herman, W.A., McGill, W.B., Dormaar, J.F., 1977. Effects of initial chemical compostiion on decomposition of roots of three grass species. Can. J. Soil. Sci. 57, 205–215. https://doi.org/10.4141/cjss77-025
Hijbeek R, van Loon MP, van Ittersum MK. 2019. Fertiliser use and soil carbon sequestration: opportunities and trade-offs. CCAFS Working Paper no. 264. Wageningen, the Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Available online at: www.ccafs.cgiar.org
HÖGBERG, P., 1997. Tansley Review No. 95 15N natural abundance in soil–plant systems. New Phytologist 137, 179–203. https://doi.org/10.1046/j.1469-8137.1997.00808.x
Hsueh, Y.-H., Li, K.-F., Lin, L.-C., Bhattacharya, S.K., Laskar, A.H., Liang, M.-C., 2021. East Asian CO2 level change caused by Pacific Decadal Oscillation. Remote Sensing of Environment 264, 112624. https://doi.org/10.1016/j.rse.2021.112624
Hu, H.-W., Xu, Z.-H., He, J.-Z., 2014. Ammonia-oxidizing archaea play a predominant role in acid soil nitrification, in: Advances in Agronomy. Elsevier, pp. 261–302. https://doi.org/10.1016/B978-0-12-800137-0.00006-6
Hu, L., Andrews, A.E., Thoning, K.W., Sweeney, C., Miller, J.B., Michalak, A.M., Dlugokencky, E., Tans, P.P., Shiga, Y.P., Mountain, M., Nehrkorn, T., Montzka, S.A., McKain, K., Kofler, J., Trudeau, M., Michel, S.E., Biraud, S.C., Fischer, M.L., Worthy, D.E.J., Vaughn, B.H., White, J.W.C., Yadav, V., Basu, S., van der Velde, I.R., 2019. Enhanced North American carbon uptake associated with El Niño. Sci. Adv. 5, eaaw0076. https://doi.org/10.1126/sciadv.aaw0076
Huang H.-P. 1986. Compound Fertilizer Tai-Fai No. 39 for rice. Bulletin of the Hualien District Agricultural Research and Extension Station: 3(3):6-8. https://www.hdares.gov.tw/upload/hdares/files/web_structure/872/news3%283%29_6-8.pdf (in Mandarin)
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995. https://doi.org/10.1098/rspa.1998.0193
Huang, T., Gao, B., Hu, X.-K., Lu, X., Well, R., Christie, P., Bakken, L.R., Ju, X.-T., 2015. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. Sci Rep 4, 3950. https://doi.org/10.1038/srep03950
Huang, W.-R., Wang, S.-Y.S., Guan, B.T., 2018. Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan. Clim Dyn 50, 1597–1608. https://doi.org/10.1007/s00382-017-3707-9
Hung, C., Hsu, H.-H., Lu, M.-M., 2004. Decadal oscillation of spring rain in northern Taiwan. Geophys. Res. Lett. 31. https://doi.org/10.1029/2004GL021344
Hussain, M.A., Stedman, G., Hughes, M.N., 1968. Kinetics and mechanism of the reaction between nitrous acid and hydroxylamine. Part III. The formation of hyponitrous acid. J. Chem. Soc., B: 597. https://doi.org/10.1039/j29680000597
Hutchinson, G.L., Livingston, G.P., 1993. Use of chamber systems to measure trace gas fluxes, in: Harper, L.A., Mosier, A.R., Duxbury, J.M., Rolston, D.E. (Eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change (Vol 55), ASA Special Publications. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, USA, pp. 63–78. https://doi.org/10.2134/asaspecpub55.c4
Hutchinson, G.L., Livingston, G.P., Healy, R.W., Striegl, R.G., 2000. Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties. J. Geophys. Res. 105, 8865–8875. https://doi.org/10.1029/1999JD901204
Huygens, D., Trimmer, M., Rütting, T., Müller, C., Heppell, C.M., Lansdown, K., Boeckx, P., 2015. Biogeochemical Nitrogen Cycling in Wetland Ecosystems: Nitrogen-15 Isotope Techniques, in: DeLaune, R.D., Reddy, K.R., Richardson, C.J., Megonigal, J.P. (Eds.), SSSA Book Series. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 553–591. https://doi.org/10.2136/sssabookser10.c30
IFA, 2021. International Fertiliser Association, Paris, France. https://www.ifastat.org/databases/plant-nutrition. Accessed on 8th May, 2021.
Inácio, Caio Teves, Chalk, P.M., Magalhães, A.M.T., 2015. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products. Critical Reviews in Food Science and Nutrition 55, 1206–1218. https://doi.org/10.1080/10408398.2012.689380
Inácio, Caio T, Urquiaga, S., Chalk, P.M., Mata, M.G.F., Souza, P.O., 2015. Identifying N fertilizer regime and vegetable production system in tropical Brazil using 15 N natural abundance: δ 15 N as a tracer of N fertilizer regime and production system. J. Sci. Food Agric. 95, 3025–3032. https://doi.org/10.1002/jsfa.7177
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Jacobson, A.R., Schuldt, K.N., Miller, J.B., Oda, T., Tans, P., Andrews, A., Mund, J., Ott, L., Collatz, G.J., Aalto, T., Afshar, S., Aikin, K., Aoki, S., Apadula, F., Baier, B., Bergamaschi, P., Beyersdorf, A., Biraud, S.C., Bollenbacher, A., Bowling, D., Brailsford, G., Abshire, J.B., Chen, G., Chen, H., Chmura, L., Climadat, S., Colomb, A., Conil, S., Cox, A., Cristofanelli, P., Cuevas, E., Curcoll, R., Sloop, C.D., Davis, K., Wekker, S.D., Delmotte, M., DiGangi, J.P., Dlugokencky, E., Ehleringer, J., Elkins, J.W., Emmenegger, L., Fischer, M.L., Forster, G., Frumau, A., Galkowski, M., Gatti, L.V., Gloor, E., Griffis, T., Hammer, S., Haszpra, L., Hatakka, J., Heliasz, M., Hensen, A., Hermanssen, O., Hintsa, E., Holst, J., Jaffe, D., Karion, A., Kawa, S.R., Keeling, R., Keronen, P., Kolari, P., Kominkova, K., Kort, E., Krummel, P., Kubistin, D., Labuschagne, C., Langenfelds, R., Laurent, O., Laurila, T., Lauvaux, T., Law, B., Lee, J., Lehner, I., Leuenberger, M., Levin, I., Levula, J., Lin, J., Lindauer, M., Loh, Z., Lopez, M., Luijkx, I.T., Myhre, C.L., Machida, T., Mammarella, I., Manca, G., Manning, Alistair, Manning, Andrew, Marek, M.V., Marklund, P., Martin, M.Y., Matsueda, H., McKain, K., Meijer, H., Meinhardt, F., Miles, N., Miller, C.E., Mölder, M., Montzka, S., Moore, F., Morgui, J.-A., Morimoto, S., Munger, B., Necki, J., Newman, S., Nichol, S., Niwa, Y., O’Doherty, S., Ottosson-Löfvenius, M., Paplawsky, B., Peischl, J., Peltola, O., Pichon, J.-M., Piper, S., Plass-Dölmer, C., Ramonet, M., Reyes-Sanchez, E., Richardson, S., Riris, H., Ryerson, T., Saito, K., Sargent, M., Sasakawa, M., Sawa, Y., Say, D., Scheeren, B., Schmidt, M., Schmidt, A., Schumacher, M., Shepson, P., Shook, M., Stanley, K., Steinbacher, M., Stephens, B., Sweeney, C., Thoning, K., Torn, M., Turnbull, J., Tørseth, K., Bulk, P.V.D., Dinther, D.V., Vermeulen, A., Viner, B., Vitkova, G., Walker, S., Weyrauch, D., Wofsy, S., Worthy, D., Young, D., Zimnoch, M., 2020. CarbonTracker CT2019B. https://doi.org/10.25925/20201008
Jani, A., Mulvaney, M.J., 2019. Nitrogen Contributions from Peanut Residues to Subsequent Crops. EDIS 2019. https://doi.org/10.32473/edis-ag431-2019
Jia, G., E. Shevliakova, P. Artaxo, N. De Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, L. Verchot. (2019) Land–climate interactions. In: P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M, Belkacemi, J. Malley, (eds), Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In press. https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/05_Chapter-2-V6.pdf (Accessed 2022/04/20).
Jiang, X., Chahine, M.T., Li, Q., Liang, M., Olsen, E.T., Chen, L.L., Wang, J., Yung, Y.L., 2012. CO2 semiannual oscillation in the middle troposphere and at the surface. Global Biogeochem. Cycles 26, 2011GB004118. https://doi.org/10.1029/2011GB004118
Jiang, X., Crisp, D., Olsen, E.T., Kulawik, S.S., Miller, C.E., Pagano, T.S., Liang, M., Yung, Y.L., 2016. CO2 annual and semiannual cycles from multiple satellite retrievals and models. Earth and Space Science 3, 78–87. https://doi.org/10.1002/2014EA000045
Jiang, X., Li, K., Liang, M., Yung, Y.L., 2021. Impact of Amazonian Fires on Atmospheric CO2. Geophysical Research Letters 48. https://doi.org/10.1029/2020GL091875
Jiang, X., Wang, J., Olsen, E.T., Liang, M., Pagano, T.S., Chen, L.L., Licata, S.J., Yung, Y.L., 2013. Influence of El Niño on Midtropospheric CO2 from Atmospheric Infrared Sounder and Model. Journal of the Atmospheric Sciences 70, 223–230. https://doi.org/10.1175/JAS-D-11-0282.1
Jien, S.-H., Hseu, Z.-Y., Guo, H.-Y., Tsai, C.-C., Chen, Z.-S., 2010. Organic Carbon Storage and Management Strategies of the Rural Soils on the Basis of Soil Information System in Taiwan.
Joabsson, A., Christensen, T.R., Wallen, B., 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution 14, 385–388. https://doi.org/10.1016/s0169-5347(99)01649-3
Joos, F., Spahni, R., Stocker, B.D., Lienert, S., Müller, J., Fischer, H., Schmitt, J., Prentice, I.C., Otto-Bliesner, B., Liu, Z., 2019. N2O changes from the Last Glacial Maximum to the preindustrial – Part II: Terrestrial N2O emissions constrain carbon-nitrogen interactions (preprint). Biogeochemistry: Greenhouse Gases. https://doi.org/10.5194/bg-2019-118
Juang, T.C., Wang, M.K., Chen, H.J., Tan, C.C., 2001. Ammonium fixation by surface soils and clays. Soil Science 166.
Jung, M.-Y., Well, R., Min, D., Giesemann, A., Park, S.-J., Kim, J.-G., Kim, S.-J., Rhee, S.-K., 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8, 1115–1125. https://doi.org/10.1038/ismej.2013.205
Kamp, J., Urazaliev, R., Balmford, A., Donald, P.F., Green, R.E., Lamb, A.J., Phalan, B., 2015. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J Appl Ecol 52, 1578–1587. https://doi.org/10.1111/1365-2664.12527
Kamphake, L.J., Hannah, S.A., Cohen, J.M., 1967. Automated analysis for nitrate by hydrazine reduction. Water Research 1, 205–216. https://doi.org/10.1016/0043-1354(67)90011-5
Kao, H.-Y., Yu, J.-Y., 2009. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate 22, 615–632. https://doi.org/10.1175/2008JCLI2309.1
Kasimir Klemedtsson, Å., Smith, K.A., 2011. The significance of nitrous oxide emission due to cropping of grain for biofuel production: A Swedish perspective. Biogeosciences 8, 3581–3591. https://doi.org/10.5194/bg-8-3581-2011
Kaushal, R., Hsueh, Y.-H., Chen, C.-L., Lan, Y.-P., Wu, P.-Y., Chen, Y.-C., Liang, M.-C., 2022. Isotopic assessment of soil N2O emission from a sub-tropical agricultural soil under varying N-inputs. Science of The Total Environment 827, 154311. https://doi.org/10.1016/j.scitotenv.2022.154311.
Keeling, C.D., 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13, 322–334. https://doi.org/10.1016/0016-7037(58)90033-4
Kendall, C., 1998. Chapter 16 - Tracing Nitrogen Sources and Cycling in Catchments, in: Kendall, C., McDonnell, J.J. (Eds.), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pp. 519–576. https://doi.org/10.1016/B978-0-444-81546-0.50023-9
Keeling, C. D, Piper, S. C, Bacastow, R. B, Wahlen, M., Whorf, T. P, Heimann, M., & Meijer, H. A. 2001. Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000. I. Global Aspects. UC San Diego: Scripps Institution of Oceanography. Retrieved from https://escholarship.org/uc/item/09v319r9
Kendall, C., McDonnell, J.J. (Eds.), 1998. Isotope tracers in catchment hydrology. Elsevier, Amsterdam; New York.
Keppel-Aleks, G., Wennberg, P.O., Schneider, T., 2011. Sources of variations in total column carbon dioxide. Atmos. Chem. Phys. 11, 3581–3593. https://doi.org/10.5194/acp-11-3581-2011
Khalil, M.I., Hossain, M.B., Schmidhalter, U., 2005. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biology and Biochemistry 37, 1507–1518. https://doi.org/10.1016/j.soilbio.2005.01.014
Killham, K., 1990. Nitrification in coniferous forest soils. Plant Soil 128, 31–44. https://doi.org/10.1007/BF00009394
Klemedtsson, L., Von Arnold, K., Weslien, P., Gundersen, P., 2005. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biol 11, 1142–1147. https://doi.org/10.1111/j.1365-2486.2005.00973.x
Klotz, M.G., Stein, L.Y., 2008. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiology Letters 278, 146–156. https://doi.org/10.1111/j.1574-6968.2007.00970.x
Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S.J., Yoshida, N., Nakajima, T., 2009. Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochimica et Cosmochimica Acta 73, 3115–3133. https://doi.org/10.1016/j.gca.2009.03.022
Komhyr, W.D., Harris, T.B., Waterman, L.S., Chin, J.F.S., Thoning, K.W., 1989. Atmospheric carbon dioxide at Mauna Loa Observatory: 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974-1985. J. Geophys. Res. 94, 8533–8547. https://doi.org/10.1029/JD094iD06p08533
Kool, D.M., Wrage, N., Oenema, O., Dolfing, J., Van Groenigen, J.W., 2007. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3− and N2O: a review. Rapid Commun. Mass Spectrom. 21, 3569–3578. https://doi.org/10.1002/rcm.3249
Kool, D.M., Wrage, N., Oenema, O., Harris, D., Van Groenigen, J.W., 2009. The 18O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Communications in Mass Spectrometry 23, 104–108. https://doi.org/10.1002/rcm.3859
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., Bergamaschi, P., 2005. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos. Chem. Phys. 5, 417–432. https://doi.org/10.5194/acp-5-417-2005
Kulawik, S.S., Jones, D.B.A., Nassar, R., Irion, F.W., Worden, J.R., Bowman, K.W., Machida, T., Matsueda, H., Sawa, Y., Biraud, S.C., Fischer, M.L., Jacobson, A.R., 2010. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science. Atmos. Chem. Phys. 10, 5601–5623. https://doi.org/10.5194/acp-10-5601-2010
Kuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry 42, 1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003
Kuzyakov, Y., Friedel, J.K., Stahr, K., 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5
Lai, C.-M., Yang, S.-S., 1998. The Impacts and the adaptive strategies of nitrous oxide on crop production, in: Lin, C.-Y., Yang, C.-M. (Eds.), Effects of Climate Change on Crop Production, Studies on Effects of Global Climate Change on Crop Production in Taiwan Area. Taiwan Agricultural Research Institute, Wufeng, Taichung Hsien, Taiwan, pp. 140–149.
Laskar, A.H., Lin, L., Jiang, X., Liang, M., 2018. Distribution of CO2 in Western Pacific, Studied Using Isotope Data Made in Taiwan, OCO‐2 Satellite Retrievals, and CarbonTracker Products. Earth and Space Science 5, 827–842. https://doi.org/10.1029/2018EA000415
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., Garnier, J., 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011. https://doi.org/10.1088/1748-9326/9/10/105011
Laughlin, R.J., Stevens, R.J., 2002. Evidence for fungal dominance of denitrification and codenitrification in a grassland Soil. Soil Sci. Soc. Am. J. 66, 1540–1548. https://doi.org/10.2136/sssaj2002.1540
Laughlin, R.J., Stevens, R.J., Müller, C., Watson, C.J., 2008. Evidence that fungi can oxidize NH 4 + to NO 3 − in a grassland soil. Eur J Soil Science 59, 285–291. https://doi.org/10.1111/j.1365-2389.2007.00995.x
Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P.A., Korsbakken, J.I., Peters, G.P., Canadell, J.G., Arneth, A., Arora, V.K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L.P., Ciais, P., Doney, S.C., Gkritzalis, T., Goll, D.S., Harris, I., Haverd, V., Hoffman, F.M., Hoppema, M., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Johannessen, T., Jones, C.D., Kato, E., Keeling, R.F., Goldewijk, K.K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P.P., Tian, H., Tilbrook, B., Tubiello, F.N., van der Laan-Luijkx, I.T., van der Werf, G.R., Viovy, N., Walker, A.P., Wiltshire, A.J., Wright, R., Zaehle, S., Zheng, B., 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
Leff, J.W., Jones, S.E., Prober, S.M., Barberán, A., Borer, E.T., Firn, J.L., Harpole, W.S., Hobbie, S.E., Hofmockel, K.S., Knops, J.M.H., McCulley, R.L., La Pierre, K., Risch, A.C., Seabloom, E.W., Schütz, M., Steenbock, C., Stevens, C.J., Fierer, N., 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. U.S.A. 112, 10967–10972. https://doi.org/10.1073/pnas.1508382112
Leite, M.F.A., Pan, Y., Bloem, J., Berge, H. ten, Kuramae, E.E., 2017. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank. Sci Rep 7, 42634. https://doi.org/10.1038/srep42634
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., Well, R., 2017. Quantifying N2O reduction to N2; based on N2O isotopocules – validation with independent methods (helium incubation and 15N gas flux method). Biogeosciences 14, 711–732. https://doi.org/10.5194/bg-14-711-2017
Lewicka-Szczebak, D., Dyckmans, J., Kaiser, J., Marca, A., Augustin, J., Well, R., 2016. Oxygen isotope fractionation during N2O production by soil denitrification. Biogeosciences 13, 1129–1144. https://doi.org/10.5194/bg-13-1129-2016
Lewicka-Szczebak, D., Lewicki, M.P., Well, R., 2020. N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies. Biogeosciences 17, 5513–5537. https://doi.org/10.5194/bg-17-5513-2020
Lewicka-Szczebak, D., Well, R., Köster, J.R., Fuß, R., Senbayram, M., Dittert, K., Flessa, H., 2014. Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils. Geochimica et Cosmochimica Acta 134, 55–73. https://doi.org/10.1016/j.gca.2014.03.010
Lin, L.-P., 1999. Effects of addition of fertilizers, pesticides and crops on denitrifiers and denitrification (II) (Final report No. NSC 88-EPA-Z-002-015), Studies of the atmospheric environments of Taiwan area. Environmental Protection Administration, Taipei, Taiwan.
Lin, Y.-Y., Chao, C.-C., 1998. Effect of N-form on the ntrification in acid red soil. Taoyuan District Agricultural Research and Extension Station Report 32, 23–31.
Lindau, C.W., Patrick, W.H., Delaune, R.D., Reddy, K.R., 1990. Rate of accumulation and emission of N2, N2O and CH4 from a flooded rice soil. Plant Soil 129, 269–276. https://doi.org/10.1007/BF00032422
Linquist, B.A., Adviento-Borbe, M.A., Pittelkow, C.M., van Kessel, C., van Groenigen, K.J., 2012. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research 135, 10–21. https://doi.org/10.1016/j.fcr.2012.06.007
Liu, J., Bowman, K.W., Schimel, D.S., Parazoo, N.C., Jiang, Z., Lee, M., Bloom, A.A., Wunch, D., Frankenberg, C., Sun, Y., O’Dell, C.W., Gurney, K.R., Menemenlis, D., Gierach, M., Crisp, D., Eldering, A., 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690. https://doi.org/10.1126/science.aam5690
Liu, Y., Kalnay, E., Zeng, N., Asrar, G., Chen, Z., Jia, B., 2019. Estimating surface carbon fluxes based on a local ensemble transform Kalman filter with a short assimilation window and a long observation window: an observing system simulation experiment test in GEOS-Chem 10.1. Geosci. Model Dev. 12, 2899–2914. https://doi.org/10.5194/gmd-12-2899-2019
Liu, Z., Yuan, Y., Xie, T., Zhang, Y., Shao, S., Nie, J., Xia, W., Rogers, K.M., Zhang, W., 2020. Long-Term Agricultural effects on the authentication accuracy of organic, green, and conventional rice using isotopic and elemental chemometric analyses. J. Agric. Food Chem. 68, 1213–1225. https://doi.org/10.1021/acs.jafc.9b06847
Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error, in: Harriss, R.C., Matson, P.A. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, Methods in Ecology. Blackwell Science, Oxford [England] ; Cambridge, Mass., USA, pp. 14–51.
Lo, Y.-H., Blanco, J.A., Guan, B.T., 2017. Douglas-fir radial growth in interior British Columbia can be linked to long-term oscillations in Pacific and Atlantic sea surface temperatures. Can. J. For. Res. 47, 371–381. https://doi.org/10.1139/cjfr-2016-0203
Lorenc, A.C., 2003. The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q.J.R. Meteorol. Soc. 129, 3183–3203. https://doi.org/10.1256/qj.02.132
Lourenço, K.S., Cassman, N.A., Pijl, A.S., van Veen, J.A., Cantarella, H., Kuramae, E.E., 2018. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front. Microbiol. 9, 674. https://doi.org/10.3389/fmicb.2018.00674
Lourenço, K.S., Costa, O.Y. de A., Cantarella, H., Kuramae, E.E., 2022. Ammonia-oxidizing bacteria and fungal denitrifier diversity are associated with N2O production in tropical soils. Soil Biology and Biochemistry 166, 108563. https://doi.org/10.1016/j.soilbio.2022.108563
MacLaren, R.G., Cameron, K.C., 2002. Soil science: sustainable production and environmental protection, new ed., 2. ed., rev. ed., reprinted. ed. Oxford Univ. Press, Auckland.
Maclean, J.L., Dawe, D.C., Hettel, G.P. (Eds.), 2002. Rice almanac: source book for the most important economic activity on earth, 3rd ed. ed. CABI Pub, Oxon, U.K.
Magyar, Paul Macdonald, 2017. Insights into pathways of nitrous oxide generation from novel isotopologue measurements. California Institute of Technology. https://doi.org/10.7907/Z93776RJ
Mandernack, K.W., Mills, C.T., Johnson, C.A., Rahn, T., Kinney, C., 2009. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria. Chemical Geology 267, 96–107. https://doi.org/10.1016/j.chemgeo.2009.06.008
Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78, 1069–1080. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Masarie, K.A., Peters, W., Jacobson, A.R., Tans, P.P., 2014. ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data 6, 375–384. https://doi.org/10.5194/essd-6-375-2014
Matsumura, S., Horinouchi, T., 2016. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high. Sci Rep 6, 37765. https://doi.org/10.1038/srep37765
McIlvin, M.R., Altabet, M.A., 2005. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595. https://doi.org/10.1021/ac050528s
McInnes, K.J., Ferguson, R.B., Kissel, D.E., Kanemasu, E.T., 1986. Field measurements of ammonia loss from surface applications of urea solution to bare soil 1. Agron.j. 78, 192–196. https://doi.org/10.2134/agronj1986.00021962007800010038x
Melillo, J.M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y.-M., Tang, J., 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences 108, 9508–9512. https://doi.org/10.1073/pnas.1018189108
Mendoza, O., De Neve, S., Deroo, H., Li, H., Sleutel, S., 2022. Do interactions between application rate and native soil organic matter content determine the degradation of exogenous organic carbon? Soil Biology and Biochemistry 164, 108473. https://doi.org/10.1016/j.soilbio.2021.108473
Mikkelsen, D.S., 1987. Nitrogen budgets in flooded soils used for rice production, in: Van Diest, A. (Ed.), Plant and Soil Interfaces and Interactions. Springer Netherlands, Dordrecht, pp. 71–97. https://doi.org/10.1007/978-94-009-3627-0_6
Miller, D.L., Mora, C.I., Grissino-Mayer, H.D., Mock, C.J., Uhle, M.E., Sharp, Z., 2006. Tree-ring isotope records of tropical cyclone activity. Proceedings of the National Academy of Sciences of the United States of America 103, 14294–14297. https://doi.org/10.1073/pnas.0606549103
Miller, J.B., Tans, P.P., 2003. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B 55, 207–214. https://doi.org/10.1034/j.1600-0889.2003.00020.x
Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J., Vaughn, B.W., 2003. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus B: Chemical and Physical Meteorology 55, 197–206. https://doi.org/10.3402/tellusb.v55i2.16696
Mohn, J., Wolf, B., Toyoda, S., Lin, C.-T., Liang, M.-C., Brüggemann, N., Wissel, H., Steiker, A.E., Dyckmans, J., Szwec, L., Ostrom, N.E., Casciotti, K.L., Forbes, M., Giesemann, A., Well, R., Doucett, R.R., Yarnes, C.T., Ridley, A.R., Kaiser, J., Yoshida, N., 2014. Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives: Interlaboratory assessment of nitrous oxide isotopomer analysis. Rapid Commun. Mass Spectrom. 28, 1995–2007. https://doi.org/10.1002/rcm.6982
Mooshammer, M., Alves, R.J.E., Bayer, B., Melcher, M., Stieglmeier, M., Jochum, L., Rittmann, S.K.-M.R., Watzka, M., Schleper, C., Herndl, G.J., Wanek, W., 2020. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from measurements of residual ammonium and accumulated nitrite. Front. Microbiol. 11, 1710. https://doi.org/10.3389/fmicb.2020.01710
Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A., 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5, 3694. https://doi.org/10.1038/ncomms4694
Mosier, A.R., 1980. Acetylene inhibition of ammonium oxidation in soil. Soil Biology and Biochemistry 12, 443–444. https://doi.org/10.1016/0038-0717(80)90023-1
Mu, Z., Huang, A., Ni, J., Xie, D., 2014. Linking annual N2O emission in organic soils to mineral nitrogen Input as estimated by heterotrophic respiration and soil C/N Ratio. PLoS ONE 9, e96572. https://doi.org/10.1371/journal.pone.0096572
Nadelhoffer, K. J., and B. Fry. 1994. Nitrogen isotope studies in forest ecosystems. Chapter 2 in: K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology, Blackwell Scientific Publications, Oxford, UK, pp. 22-44.
Nguyen, N. 2002. Global climate changes and rice food security (FAO). International Rice Commission. https://www.unisdr.org/preventionweb/files/33814_rciwamanuscriptrev3fulll.pdf
Nguyen, N., 2002. Global climate changes and rice food security.
NOAA ESRL GML CCGG Group, 2019. Earth System Research Laboratory Carbon Cycle and Greenhouse Gases Group Flask-Air Sample Measurements of CO2 at Global and Regional Background Sites, 1967-Present. https://doi.org/10.15138/WKGJ-F215
Obayashi, E., Takahashi, S., Shiro, Y., 1998. Electronic structure of reaction intermediate of cytochrome P450nor in its nitric oxide reduction. J. Am. Chem. Soc. 120, 12964–12965. https://doi.org/10.1021/ja9813764
O’Dell, C.W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C.E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G.C., Wennberg, P.O., Wunch, D., 2012. The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 5, 99–121. https://doi.org/10.5194/amt-5-99-2012
Opdyke, M.R., Ostrom, N.E., Ostrom, P.H., 2009. Evidence for the predominance of denitrification as a source of N2O in temperate agricultural soils based on isotopologue measurements: Isotopes to determine sources of N2O. Global Biogeochem. Cycles 23, n/a-n/a. https://doi.org/10.1029/2009GB003523
Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips, N., Ewers, B.E., Maier, C., Schäfer, K.V.R., McCarthy, H., Hendrey, G., McNulty, S.G., Katul, G.G., 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472. https://doi.org/10.1038/35078064
Ostrom, N.E., Pitt, A., Sutka, R., Ostrom, P.H., Grandy, A.S., Huizinga, K.M., Robertson, G.P., 2007. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J. Geophys. Res. 112, G02005. https://doi.org/10.1029/2006JG000287
Ostrom, N.E., Sutka, R., Ostrom, P.H., Grandy, A.S., Huizinga, K.M., Gandhi, H., von Fischer, J.C., Robertson, G.P., 2010. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland. Soil Biology and Biochemistry 42, 499–506. https://doi.org/10.1016/j.soilbio.2009.12.003
O’Toole, P., Morgan, M.A., McAleese, D.M., 1982. Effects of soil properties, temperature and urea concentration on patterns and rates of urea hydrolysis in some Irish soils. Irish Journal of Agricultural Research 21, 185–197.
Ou-Yang, C.-F., Lin, N.-H., Lin, C.-C., Wang, S.-H., Sheu, G.-R., Lee, C.-T., Schnell, R.C., Lang, P.M., Kawasato, T., Wang, J.-L., 2014. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmospheric Environment 89, 613–622. https://doi.org/10.1016/j.atmosenv.2014.02.060
Ou-Yang, C.-F., Yen, M.-C., Lin, T.-H., Wang, J.-L., Schnell, R.C., Lang, P.M., Chantara, S., Lin, N.-H., 2015. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea. Environmental Research Letters 10, 065005. https://doi.org/10.1088/1748-9326/10/6/065005
Park, S., Croteau, P., Boering, K.A., Etheridge, D.M., Ferretti, D., Fraser, P.J., Kim, K.-R., Krummel, P.B., Langenfelds, R.L., van Ommen, T.D., Steele, L.P., Trudinger, C.M., 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience 5, 261–265. https://doi.org/10.1038/ngeo1421
Park, S., Pérez, T., Boering, K.A., Trumbore, S.E., Gil, J., Marquina, S., Tyler, S.C., 2011. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Tropical soils N2O stable isotopes. Global Biogeochem. Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003615
Parkin, T.B. and Venterea, R.T. 2010. Chamber-Based trace gas flux measurements. In R.F. Follett (ed.), Sampling Protocols. p. 3-1 to 3-39. www.ars.usda.gov/research/GRACEnet (Accessed 2016/12/10).
Pauleta, S.R., Carepo, M.S.P., Moura, I., 2019. Source and reduction of nitrous oxide. Coordination Chemistry Reviews 387, 436–449. https://doi.org/10.1016/j.ccr.2019.02.005
Peng, T.-R., Lin, H.-J., Wang, C.-H., Liu, T.-S., Kao, S.-J., 2012. Pollution and variation of stream nitrate in a protected high-mountain watershed of Central Taiwan: evidence from nitrate concentration and nitrogen and oxygen isotope compositions. Environ Monit Assess 184, 4985–4998. https://doi.org/10.1007/s10661-011-2314-1
Peters, W., Jacobson, A.R., Sweeney, C., Andrews, A.E., Conway, T.J., Masarie, K., Miller, J.B., Bruhwiler, L.M.P., Pétron, G., Hirsch, A.I., Worthy, D.E.J., van der Werf, G.R., Randerson, J.T., Wennberg, P.O., Krol, M.C., Tans, P.P., 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. U.S.A. 104, 18925–18930. https://doi.org/10.1073/pnas.0708986104
Peters, W., Miller, J.B., Whitaker, J., Denning, A.S., Hirsch, A., Krol, M.C., Zupanski, D., Bruhwiler, L., Tans, P.P., 2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. 110, D24304. https://doi.org/10.1029/2005JD006157
Pochanart, P., Wild, O., Akimoto, H., 2004. Air pollution import to and export from East Asia, in: Stohl, A. (Ed.), Air Pollution: Intercontinental Transport of Air Pollution. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 99–130. https://doi.org/10.1007/b94525
Poffenbarger, H.J., Barker, D.W., Helmers, M.J., Miguez, F.E., Olk, D.C., Sawyer, J.E., Six, J., Castellano, M.J., 2017. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 12, e0172293. https://doi.org/10.1371/journal.pone.0172293
Prinčič, A., Mahne, I., Megušar, F., Paul, E.A., Tiedje, J.M., 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol 64, 3584–3590. https://doi.org/10.1128/AEM.64.10.3584-3590.1998
Prosser, J.I., Society for General Microbiology (Eds.), 1986. Nitrification, Special publications of the Society for General Microbiology. Published for the Society for General Microbiology by IRL Press, Oxford ; Washington, DC.
Rangarajan, R., Laskar, A.H., Bhattacharya, S.K., Shen, C.-C., Liang, M.-C., 2017. An insight into the western Pacific wintertime moisture sources using dual water vapor isotopes. Journal of Hydrology 547, 111–123. https://doi.org/10.1016/j.jhydrol.2017.01.047
Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125. https://doi.org/10.1126/science.1176985
Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton.
Reddy, K.R., Patrick, W.H., Lindau, C.W., 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands: Nitrogen losses in wetlands. Limnol. Oceanogr. 34, 1004–1013. https://doi.org/10.4319/lo.1989.34.6.1004
Reich, P.B., Hobbie, S.E., Lee, T.D., 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geosci 7, 920–924. https://doi.org/10.1038/ngeo2284
Rochette, P., Eriksen-Hamel, N.S., 2008. Chamber measurements of soil nitrous oxide flux: Are absolute values reliable? Soil Sci. Soc. Am. J. 72, 331–342. https://doi.org/10.2136/sssaj2007.0215
Rohe, L., Anderson, T.-H., Braker, G., Flessa, H., Giesemann, A., Lewicka-Szczebak, D., Wrage-Mönnig, N., Well, R., 2014. Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study: Isotopomer signatures of N 2 O from fungal denitrification. Rapid Commun. Mass Spectrom. 28, 1893–1903. https://doi.org/10.1002/rcm.6975
Rohe, L., Well, R., Lewicka-Szczebak, D., 2017. Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification. Rapid Commun Mass Spectrom 31, 1297–1312. https://doi.org/10.1002/rcm.7909
Rudaz, A.O., Davidson, E.A., Firestone, M.K., 1991. Sources of nitrous oxide production following wetting of dry soil. FEMS Microbiology Letters 85, 117–124. https://doi.org/10.1111/j.1574-6968.1991.tb04703.x-i1
Rummel, P.S., Well, R., Pfeiffer, B., Dittert, K., Floßmann, S., Pausch, J., 2021. Nitrate uptake and carbon exudation – do plant roots stimulate or inhibit denitrification? Plant Soil 459, 217–233. https://doi.org/10.1007/s11104-020-04750-7
Rütting, T., Boeckx, P., Müller, C., Klemedtsson, L., 2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791. https://doi.org/10.5194/bg-8-1779-2011
Ryu, Y., Ahn, J., Yang, J. ‐W., Brook, E.J., Timmermann, A., Blunier, T., Hur, S., Kim, S. ‐J., 2020. Atmospheric nitrous oxide variations on centennial time scales during the past two millennia. Global Biogeochemical Cycles 34. https://doi.org/10.1029/2020GB006568
Salzer, M.W., Kipfmueller, K.F., 2005. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, U.S.A. Climatic Change 70, 465–487. https://doi.org/10.1007/s10584-005-5922-3
Santoro, A.E., Buchwald, C., McIlvin, M.R., Casciotti, K.L., 2011. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333, 1282–1285. https://doi.org/10.1126/science.1208239
Schimel, D., Stephens, B.B., Fisher, J.B., 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences 112, 436–441. https://doi.org/10.1073/pnas.1407302112
Schjørring, J.K., 1986. Nitrate and ammonium absorption by plants growing at a sufficient or insufficient level of phosphorus in nutrient solutions. Plant Soil 91, 313–318. https://doi.org/10.1007/BF02198114
Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., Burrows, J.P., 2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 11, 2863–2880. https://doi.org/10.5194/acp-11-2863-2011
Scott, A.D., Hanway, J.J., Edwards, A.P., 1958. Replaceability of ammonium in vermiculite with acid solutions. Soil Science Society of America Journal 22, 388. https://doi.org/10.2136/sssaj1958.03615995002200050006x
Shcherbak, I., Millar, N., Robertson, G.P., 2014. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. U.S.A. 111, 9199–9204. https://doi.org/10.1073/pnas.1322434111
Shoun, H., Fushinobu, S., Jiang, L., Kim, S.-W., Wakagi, T., 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Phil. Trans. R. Soc. B 367, 1186–1194. https://doi.org/10.1098/rstb.2011.0335
Signor, D., Cerri, C.E.P., Conant, R., 2013. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environ. Res. Lett. 8, 015013. https://doi.org/10.1088/1748-9326/8/1/015013
Sigurdarson, J.J., Svane, S., Karring, H., 2018. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Biotechnol 17, 241–258. https://doi.org/10.1007/s11157-018-9466-1
Smith, K.A., Mosier, A.R., Crutzen, P.J., Winiwarter, W., 2012. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Phil. Trans. R. Soc. B 367, 1169–1174. https://doi.org/10.1098/rstb.2011.0313
Smolander, A., Kanerva, S., Adamczyk, B., Kitunen, V., 2012. Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations? Plant Soil 350, 1–26. https://doi.org/10.1007/s11104-011-0895-7
Snider, D.M., Schiff, S.L., Spoelstra, J., 2009. 15N/14N and 18O/16O stable isotope ratios of nitrous oxide produced during denitrification in temperate forest soils. Geochimica et Cosmochimica Acta 73, 877–888. https://doi.org/10.1016/j.gca.2008.11.004
Snider, D.M., Venkiteswaran, J.J., Schiff, S.L., Spoelstra, J., 2015. From the ground up: Global nitrous oxide sources are constrained by stable isotope values. PLoS ONE 10, e0118954. https://doi.org/10.1371/journal.pone.0118954
Snider, D.M., Venkiteswaran, J.J., Schiff, S.L., Spoelstra, J., 2012. Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Glob Change Biol 18, 356–370. https://doi.org/10.1111/j.1365-2486.2011.02547.x
Snider, D.M., Wagner-Riddle, C., Spoelstra, J., 2017. Stable isotopes reveal rapid cycling of soil nitrogen after manure application. J. Environ. Qual. 46, 261–271. https://doi.org/10.2134/jeq2016.07.0253
Spiro, S., D’Autréaux, B., 2012. Non-heme iron sensors of reactive oxygen and nitrogen species. Antioxidants & Redox Signaling 17, 1264–1276. https://doi.org/10.1089/ars.2012.4533
Sun, R., Guo, X., Wang, D., Chu, H., 2015. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Applied Soil Ecology 95, 171–178. https://doi.org/10.1016/j.apsoil.2015.06.010
Sutka, R.L., Ostrom, N.E., Ostrom, P.H., Breznak, J.A., Gandhi, H., Pitt, A.J., Li, F., 2006. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72, 638–644. https://doi.org/10.1128/AEM.72.1.638-644.2006
Sutka, R.L., Ostrom, N.E., Ostrom, P.H., Gandhi, H., Breznak, J.A., 2003. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea andMethylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 17, 738–745. https://doi.org/10.1002/rcm.968
Thomson, A.J., Giannopoulos, G., Pretty, J., Baggs, E.M., Richardson, D.J., 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Phil. Trans. R. Soc. B 367, 1157–1168. https://doi.org/10.1098/rstb.2011.0415
Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N., Pan, S., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y., 2020b. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256. https://doi.org/10.1038/s41586-020-2780-0
Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16, 574–582. https://doi.org/10.1029/WR016i003p00574
Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K., Shiomi, H., 2011a. Isotopomer analysis of production and consumption mechanisms of N 2 O and CH 4 in an advanced wastewater treatment system. Environ. Sci. Technol. 45, 917–922. https://doi.org/10.1021/es102985u
Toyoda, S., Yano, M., Nishimura, S., Akiyama, H., Hayakawa, A., Koba, K., Sudo, S., Yagi, K., Makabe, A., Tobari, Y., Ogawa, N.O., Ohkouchi, N., Yamada, K., Yoshida, N., 2011b. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis: Isotopoermer ratios of soil-emitted N2O. Global Biogeochem. Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003769
Toyoda, S., Yoshida, N., 1999. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Anal. Chem. 71, 4711–4718. https://doi.org/10.1021/ac9904563
Toyoda, S., Yoshida, N., Koba, K., 2017. Isotopocule analysis of biologically produced nitrous oxide in various environments: Isotopocule analysis of biological N2O. Mass Spec Rev 36, 135–160. https://doi.org/10.1002/mas.21459
Tsai, Jenn-Kuo, Chi-Ling Chen, Jheng-Hong Hu, I-Hsin Sung, Sheng-Shan Lu, Ya-Ling Lin, Chia-Chen Pan, Chih-Feng Chiang, Jer-Way Chang, Dah-Jing Liao, Rei-Chang Wang, Chin-Shing Chang, Ru-Hong Lin, and Wei-Ting Hwang. Long-Term effect of different farming practices on crop yield, biodiversity, and environment in Central Taiwan. Agriculture. (under review)
Tubiello, F. N., Salvatore, M., Cóndor Golec, R. D., Ferrara, A., Rossi, S., Biancalani, R., et al. 2014. Agriculture, forestry and other land use emissions by sources and removals by sinks, 1990 – 2011 Analysis. ESS Working Paper No. 2. FAO Statistical Division. http://www.fao.org/docrep/019/i3671e/i3671e.pdf (Accessed 2022/4/20)
van Geldern, R., Nowak, M.E., Zimmer, M., Szizybalski, A., Myrttinen, A., Barth, J.A.C., Jost, H.-J., 2014. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring. Anal. Chem. 86, 12191–12198. https://doi.org/10.1021/ac5031732
Velthof, G.L., Jarvis, S.C., Stein, A., Allen, A.G., Oenema, O., 1996. Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28, 1215–1225. https://doi.org/10.1016/0038-0717(96)00129-0
Verhoeven, E., Barthel, M., Yu, L., Celi, L., Said-Pullicino, D., Sleutel, S., Lewicka-Szczebak, D., Six, J., Decock, C., 2019. Early season N2O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile. Biogeosciences 16, 383–408. https://doi.org/10.5194/bg-16-383-2019
Vieten, B., Blunier, T., Neftel, A., Alewell, C., Conen, F., 2007. Fractionation factors for stable isotopes of N and O during N2O reduction in soil depend on reaction rate constant. Rapid Commun. Mass Spectrom. 21, 846–850. https://doi.org/10.1002/rcm.2915
Wada, E., Hattori, A., 1978. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology Journal 1, 85–101. https://doi.org/10.1080/01490457809377725
Wahman, D.G., Pressman, J.G., 2014. Nitrification in chloraminated drinking water distribution systems: Factors affecting occurrence, in: Comprehensive Water Quality and Purification. Elsevier, pp. 283–294. https://doi.org/10.1016/B978-0-12-382182-9.00039-6
Wang, R.C., Sun, W.C., Jing, W.J., Lin, C.C., Huang, S.N., 2012. Effect of Agricultural Long Term Ecosystem on productivity of crops and soil fertility. Research Bulletin of Tainan District Agricultural Research and Extension Station 60, 48–67.
Wei, J., Reichel, R., Islam, M.S., Wissel, H., Amelung, W., Brüggemann, N., 2020. Chemical composition of high organic carbon soil amendments affects fertilizer-derived N2O emission and nitrogen immobilization in an oxic sandy loam. Front. Environ. Sci. 8, 15. https://doi.org/10.3389/fenvs.2020.00015
Wei, W., Isobe, K., Shiratori, Y., Yano, M., Toyoda, S., Koba, K., Yoshida, N., Shen, H., Senoo, K., 2021. Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils. Environmental Pollution 287, 117494. https://doi.org/10.1016/j.envpol.2021.117494
Well, R., Flessa, H., Xing, L., Xiaotang, J., Römheld, V., 2008. Isotopologue ratios of N2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification. Soil Biology and Biochemistry 40, 2416–2426. https://doi.org/10.1016/j.soilbio.2008.06.003
Welp, L.R., Keeling, R.F., Meijer, H.A.J., Bollenbacher, A.F., Piper, S.C., Yoshimura, K., Francey, R.J., Allison, C.E., Wahlen, M., 2011. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477, 579–582. https://doi.org/10.1038/nature10421
Weng, J.-L., 2006. Effects of soil organic nitrogen forms on nitrogen mineralization of three coniferous forests types in Central Taiwan. National Taiwan University, Taipei, Taiwan.
West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.), 2010. Isoscapes. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3
Wolde-meskel, E., Terefework, Z., Frostegård, Å., Lindström, K., 2005. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. International Journal of Systematic and Evolutionary Microbiology 55, 1439–1452. https://doi.org/10.1099/ijs.0.63534-0
Wrage, N., Velthof, G.L., Laanbroek, H.J., Oenema, O., 2004. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry 36, 229–236. https://doi.org/10.1016/j.soilbio.2003.09.009
Wrage-Mönnig, N., Horn, M.A., Well, R., Müller, C., Velthof, G., Oenema, O., 2018. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology and Biochemistry 123, A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020
Wright, W.E., Guan, B.T., Tseng, Y.-H., Cook, E.R., Wei, K.-Y., Chang, S.-T., 2015. Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology. Clim Dyn 44, 1645–1659. https://doi.org/10.1007/s00382-014-2402-3
Wu, C.-C., Wei, F.-J., Chiou, W.-Y., Tsai, Y.-C., Wu, H.-P., Gotarkar, D., Wei, Z.-H., Lai, M.-H., Hsing, Y.-I.C., 2020. Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. PLoS ONE 15, e0239028. https://doi.org/10.1371/journal.pone.0239028
Wu, C.H., Wu, W.C., Lien, T.J., Huang, S.N., 2007. Effect of green manure soybean on rice yield and soil fertility. Research Bulletin of Tainan District Agricultural Research and Extension Station 49, 49–55.
Wu, P.-Y., 2016. Measurements of GHGs emission factors in Taiwan (fisrt stage- 2/4) (No. 080103C200 (105AgTech-8.1.3-Ag-C2)). Taiwan Agriculture Research Institute, Taichung, Taiwan.
Wu, Z., Huang, N.E., 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 01, 1–41. https://doi.org/10.1142/S1793536909000047
Yamagishi, H., Westley, M.B., Popp, B.N., Toyoda, S., Yoshida, N., Watanabe, S., Koba, K., Yamanaka, Y., 2007. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J. Geophys. Res. 112, G02015. https://doi.org/10.1029/2006JG000227
Yamulki, S., Toyoda, S., Yoshida, N., Veldkamp, E., Grant, B., Bol, R., 2001. Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment. Rapid Commun. Mass Spectrom. 15, 1263–1269. https://doi.org/10.1002/rcm.352
Yang, C.-Y., Yang, M.-D., Tseng, W.-C., Hsu, Y.-C., Li, G.-S., Lai, M.-H., Wu, D.-H., Lu, H.-Y., 2020. Assessment of rice developmental stage using time series UAV imagery for variable irrigation management. Sensors 20, 5354. https://doi.org/10.3390/s20185354
Yang, S.-C., Kalnay, E., Miyoshi, T., 2012. Accelerating the EnKF spinup for typhoon sssimilation and prediction. Weather and Forecasting 27, 878–897. https://doi.org/10.1175/WAF-D-11-00153.1
Yang, S.-S., Chen, I.C., Chang, C.H., Pai, C.R., Wei, C.B., 2003a. Greenhouse gases flux, monitoring, mitigation and control strategies during agricultural and livestock wastes treatment (No. RN9411- 0140). Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
Yang, S.-S., Li, H.-C., 1996. Effect of environmental conditions on the methane emission and microflora of paddy soils, wetlands and forest soils (No. RD8704- 0050). Global Change Research Center, National Taiwan University, Taipei, Taiwan.
Yang, S.-S., Liu, C.B., Chen, I.C., Chang, C.C., Wei, C.B., Lai, C.M., Chang, C.H., Wang, Y.P., Chou, C.C., Chang, C.M., Wang, S.L., Chen, C.T., 2003b. Greenhouse gases flux, monitoring, mitigation and control strategies during agricultural and livestock wastes treatment. Global Change Newsletter 40, 59–71.
Yang, S.-S., Liu, C.-M., Lai, C.-M., Liu, Y.-L., 2003c. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990–2000 in Taiwan. Chemosphere 52, 1295–1305. https://doi.org/10.1016/S0045-6535(03)00029-8
Yano, M., Toyoda, S., Tokida, T., Hayashi, K., Hasegawa, T., Makabe, A., Koba, K., Yoshida, N., 2014. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation. Soil Biology and Biochemistry 70, 66–78. https://doi.org/10.1016/j.soilbio.2013.11.026
Yao, M.-H., 2009. Studies on the estimation of greenhouse gas emission and the evaluation of climate change (No. 070301C104, 98 Ag-Tech- 7.3.1- Agri- C1(4)). Taiwan Agriculture Research Institute.
Yao, M.-H., Chen, S.-H., Chen, S., 2006. Studies on the estimation of greenhouse gas emissions from paddy felds in Taiwan. Journal of Taiwan Agricultural Research 55, 280–293. https://doi.org/10.6156/JTAR/2006.05504.06
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S., 2009. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 5, 160–163. https://doi.org/10.2151/sola.2009-041
Yoneyama, T., Ito, O., Engelaar, W.M.H.G., 2003. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochemistry Reviews 2, 121–132. https://doi.org/10.1023/B:PHYT.0000004198.95836.ad
Yoneyama, T., Kouno, K., Yazaki, J., 1990. Variation of natural 15 N abundance of crops and soils in Japan with special reference to the effect of soil conditions and Fertilizer application. Soil Science and Plant Nutrition 36, 667–675. https://doi.org/10.1080/00380768.1990.10416804
Yoneyama, T., Matsumaru, T., Usui, K., Engelaar, W.M.H.G., 2001. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant, Cell & Environment 24, 133–139. https://doi.org/10.1046/j.1365-3040.2001.00663.x
Yoshida, N., Toyoda, S., 2000. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405, 330–334. https://doi.org/10.1038/35012558
Yoshida, S., 1981. Fundamentals of rice crop science. The International Rice Research Institute, Los Baños, Philippines.
Yu, L., Harris, E., Lewicka‐Szczebak, D., Barthel, M., Blomberg, M.R.A., Harris, S.J., Johnson, M.S., Lehmann, M.F., Liisberg, J., Müller, C., Ostrom, N.E., Six, J., Toyoda, S., Yoshida, N., Mohn, J., 2020. What can we learn from N2O isotope data? – Analytics, processes and modelling. Rapid Commun Mass Spectrom 34. https://doi.org/10.1002/rcm.8858
Yuan, S., Linquist, B.A., Wilson, L.T., Cassman, K.G., Stuart, A.M., Pede, V., Miro, B., Saito, K., Agustiani, N., Aristya, V.E., Krisnadi, L.Y., Zanon, A.J., Heinemann, A.B., Carracelas, G., Subash, N., Brahmanand, P.S., Li, T., Peng, S., Grassini, P., 2021. Sustainable intensification for a larger global rice bowl. Nat Commun 12, 7163. https://doi.org/10.1038/s41467-021-27424-z
Zhang, Y., Sperber, K.R., Boyle, J.S., 1996. Interannual variation of East Asian winter monsoon and ENSO. Lawrence Livermore National Lab., CA (United States).
指導教授 梁茂昌 劉說安(MAO-CHANG LIANG YUEI-AN LIOU) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明