參考文獻 |
[1] Krizhevsky, A., Sutskever, I. and Hinton, G., 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), pp.84-90.
[2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, 2015. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9.
[3] Cai, Z. and Vasconcelos, N., 2021. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5), pp.1483-1498.
[4] Ren, S., He, K., Girshick, R. and Sun, J., 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp.1137-1149.
[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, 2017. Mask R-CNN. Proceedings of the IEEE conference on computer vision and pattern recognition.
[6] Gidaris, S., & Komodakis, N. (2015). Object detection via a multi-region and semantic segmentation-aware cnn model. In Proceedings of the IEEE international conference on computer vision (pp. 1134-1142).
[7] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
[8] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125).
[9] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8759-8768).
[10] Zhao, G., Ge, W., & Yu, Y. (2021). GraphFPN: Graph Feature Pyramid Network for Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2763-2772).
[11] Trémeau, A., & Colantoni, P. (2000). Regions adjacency graph applied to color image segmentation. IEEE Transactions on image processing, 9(4), 735-744.
[12] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
[13] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
[14] O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., ... & Walsh, J. (2019, April). Deep learning vs. traditional computer vision. In Science and information conference (pp. 128-144). Springer, Cham.
[15] Karami, E., Shehata, M., & Smith, A. (2017). Image identification using SIFT algorithm: performance analysis against different image deformations. arXiv preprint arXiv:1710.02728.
[16] Bay, H., Tuytelaars, T., & Gool, L. V. (2006, May). Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer, Berlin, Heidelberg.
[17] Rosten, E., & Drummond, T. (2006, May). Machine learning for high-speed corner detection. In European conference on computer vision (pp. 430-443). Springer, Berlin, Heidelberg.
[18] Goldenshluger, A., & Zeevi, A. (2004). The Hough transform estimator. The Annals of Statistics, 32(5), 1908-1932.
[19] Tsai, F. C. (1994). Geometric hashing with line features. Pattern Recognition, 27(3), 377-389.
[20] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.
[21] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
[22] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). |