博碩士論文 109523060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.119.199
姓名 施佳宏(Jia-Hong Shi)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 智能反射面板輔助多用戶毫米波大規模多輸入多輸出正交分頻多工系統之通道估測及混合波束成形
(Channel Estimation and Hybrid Beamforming Design for Intelligent Reflecting Surface-Assisted Multi-User Millimeter Wave Massive MIMO-OFDM systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-29以後開放)
摘要(中) 毫米波通訊在第五代(5G)行動通訊中是一項新興的候選技術,但是毫米波通訊仍然有挑戰需要面臨,例如覆蓋範圍有限,需要建置許多基地台來傳送訊號,因此會造成成本高昂、僅支援視距傳輸等。近年,學者基於上述問題,研發一種新技術名為智能反射面板 (IRS) 技術,通過大量低成本的無源反射元件,智能地重新建構無線傳輸環境,從而提高無限通信的性能。此外,由於毫米波通道造成高路徑損耗,因此需要大規模 MIMO 天線技術通過波束成形增益進行補償。然而,想要實際模擬毫米波通道大規模 MIMO 天線技術並不是容易的,其困難在於 MIMO 系統中的每個天線都需要對應到特定的射頻 (RF) 鏈。且射頻 (RF) 鏈造成高成本問題需要考量,因此,學者提出混合波束成形結構並應用在降低能量損耗和實作的成本的解決方案。假設我們給定了完美通道狀態信息 (CSI),我們可以設計混合預編碼器和結合器,並且在毫米波通道中傳輸資料。然而,若是無法得知通道狀態信息 (CSI),我們就需要事先對通道進行估測,因此,有許多通道估側的方法已被提出。在本文中,我們為混合架構的毫米波信道估計問題,既應用了毫米波通道的稀疏性質,並且結合壓縮感知技術,對稀疏通道進行估測,且利用投影算法將數字基帶和模擬射頻預編碼器的設計問題簡化為可以找到最優解的子優化問題。總結,本文所提出的演算法應用在毫米波大規模 MIMO 系統上,其考慮了通道估計、波束成形和IRS相移優化的解決方案,且頻譜效率接近了在完美通道狀態信息可實現的效率。
摘要(英) Millimeter-wave (mmWave) communication is an emerging candidate technology in the fifth generation (5G) mobile communication, but mmWave communication still has challenges to face, such as limited coverage, the need to build many base stations to transmit signals, thus incurring costs expensive, only supports line-of-sight transmission, etc. In recent years, based on the above problems, scholars have developed a new technology called intelligent reflecting surface (IRS) technology, which intelligently reconstructs the wireless transmission environment through a large number of low-cost passive reflective elements, thereby improving the performance of wireless communication. In addition, due to the high path loss caused by mmWave channels, massive MIMO antenna technology is required to compensate by beamforming gain. However, it is not easy to actually simulate massive MIMO antenna technology for mmWave channels. And the high cost problem caused by the radio frequency (RF) chain needs to be considered. Therefore, scholars have proposed a hybrid beamforming structure and applied a solution to reduce energy loss and implementation cost. Therefore, scholars have proposed a hybrid beamforming structure as a solution to reduce the cost and energy loss of implementation. Assuming we are given perfect channel state information (CSI), we can design hybrid precoders and combiners and transmit data in mmWave channels. However, if the channel state information (CSI) cannot be known, we need to estimate the channel in advance. Therefore, many channel estimation methods have been proposed. In this paper, for the mmWave channel estimation problem of hybrid architecture, we not only apply the sparse nature of mmWave channels, but also combine the compressed sensing technology to estimate the sparse channels, and use the projection algorithm to predict the digital baseband and analog radio frequency. The encoder design problem reduces to a sub-optimization problem where the optimal solution can be found. In conclusion, the algorithm proposed in this paper is applied to mmWave massive MIMO system, which considers the solutions of channel estimation, beamforming and IRS phase shift optimization, and the spectral efficiency is close to that achievable with perfect channel state information.
關鍵字(中) ★ 智能反射面板
★ 多用戶
★ 毫米波
★ 大規模多輸入多輸出
★ 正交分頻多工系統
★ 通道估測
★ 混合波束成形
關鍵字(英) ★ Intelligent Reflecting Surface
★ Multi-User
★ Millimeter Wave
★ Massive MIMO
★ OFDM systems
★ Channel Estimation
★ Hybrid Beamforming
論文目次 論文摘要 ii
Abstract iv
致謝 vi
Contents vii
List of Figures ix
List of Tables x
Chapter 1. Introduction 1
1.1. Millimeter-Wave Communication 1
1.2. Massive MIMO 2
1.3. Structure of Hybrid Beamforming 3
1.4. Array Steering Vector 4
1.5. Channel Estimation of Compressed Sensing 5
1.6. Intelligent Reflecting Surface 6
1.7. Contribution 6
1.8. Organization 8
1.9. Abbreviations 9
1.10. Notation 11
Chapter 2. System Model 14
2.1. Hybrid Precoding and Combining 14
2.2. Intelligent Reflecting Surface Reflection Element 16
2.3. Channel Model 17
2.4. Problem Formulation 24
Chapter 3. Channel Estimation for Compressive Sensing 25
3.1 Compressed Sensing Model 25
3.2 Simultaneous Weighted Sparsity Adaptive StOMP 30
Chapter 4. Proposed Hybrid Beamforming 36
4.1 Modified PE-Alt-Min Hybrid Beamforming 36
4.2 Proposed Hybrid Beamforming 45
Chapter 5. Successive Refinement Algorithm 54
Chapter 6. Simulation Results 57
Chapter 7. Conclusion 63
References 64
參考文獻 References
[1] J. G. Andrews et al., "What Will 5G Be?," in IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014.
[2] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011.
[3] T. S. Rappaport et al., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," in IEEE Access, vol. 1, pp. 335-349, 2013.
[4] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, "Five disruptive technology directions for 5G," in IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, February 2014.
[5] S. Rangan, T. S. Rappaport and E. Erkip, "Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges," in Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, March 2014.
[6] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, "An Overview of Massive MIMO: Benefits and Challenges," in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014.
[7] C. Wang et al., "Cellular architecture and key technologies for 5G wireless communication networks," in IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, February 2014.
[8] P. Wang, Y. Li, L. Song and B. Vucetic, "Multi-gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks," in IEEE Communications Magazine, vol. 53, no. 1, pp. 168-178, January 2015.
[9] F. Rusek et al., "Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays," in IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[10] S. Han, C. I, Z. Xu and C. Rowell, "Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G," in IEEE Communications Magazine, vol. 53, no. 1, pp. 186-194, January 2015.
[11] X. Gao, L. Dai, S. Han, C. I and R. W. Heath, "Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998-1009, April 2016.
[12] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh and A. M. Sayeed, "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436-453, April 2016.
[13] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic and R. W. Heath, "Channel estimation and hybrid combining for mmWave: Phase shifters or switches?," 2015 Information Theory and Applications Workshop (ITA), 2015, pp. 90-97.
[14] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb and R. W. Heath, "Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches?," in IEEE Access, vol. 4, pp. 247-267, 2016.
[15] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014.
[16] D. Needell and R. Vershynin, "Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit," in IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 310-316, April 2010.
[17] D. Needell and JA Tropp, "CoSaMP:iterative signal recovery from incomplete and inaccurate samples" [J].Applied & Computational Harmonic Analysis,2008.
[18] W. Dai and O. Milenkovic, "Subspace Pursuit for Compressive Sensing Signal Reconstruction," in IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.
[19] M. Soleimani, R. C. Elliott, W. A. Krzymien, J. Melzer and P. Mousavi, "Hybrid beamforming and DFT-based channel estimation for millimeter wave MIMO systems," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017.
[20] Q. Tao, J. Wang and C. Zhong, "Performance Analysis of Intelligent Reflecting Surface Aided Communication Systems," in IEEE Communications Letters, vol. 24, no. 11, pp. 2464-2468, Nov. 2020.
[21] J. -S. Jung, C. -Y. Park, J. -H. Oh and H. -K. Song, "Intelligent Reflecting Surface for Spectral Efficiency Maximization in the Multi-User MISO Communication Systems," in IEEE Access, vol. 9, pp. 134695-134702, 2021.
[22] Q. Wu and R. Zhang, "Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design," 2018 IEEE Global Communications Conference (GLOBECOM), 2018.
[23] W. Yan, X. Yuan, Z. -Q. He and X. Kuai, "Passive Beamforming and Information Transfer Design for Reconfigurable Intelligent Surfaces Aided Multiuser MIMO Systems," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1793-1808, Aug. 2020.
[24] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, ‘‘Wireless communications through reconfigurable intelligent surfaces,’’ IEEE Access, vol. 7, pp. 116753–116773, 2019.
[25] X. Yu, J. Zhang and K. B. Letaief, "A Hardware-Efficient Analog Network Structure for Hybrid Precoding in Millimeter Wave Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 282-297, May 2018.
[26] J. Zhang, Y. Huang, J. Wang and L. Yang, "Hybrid Precoding for Wideband Millimeter-Wave Systems With Finite Resolution Phase Shifters," in IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11285-11290, Nov. 2018.
[27] F. Sohrabi and W. Yu, "Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1432-1443, July 2017.
[28] Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng, and H. Guo, “Large intelligent surface/antennas (LISA): making reflective radios smart,” J. Commun. Inf. Netw., vol. 4, no. 2, pp. 40–50, Jun. 2019.
[29] H. Niu, Z. Chu, F. Zhou, C. Pan, D. W. K. Ng and H. X. Nguyen, "Double Intelligent Reflecting Surface-Assisted Multi-User MIMO Mmwave Systems With Hybrid Precoding," in IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1575-1587, Feb. 2022.
[30] Z. Chen, J. Tang, X. Y. Zhang, D. K. C. So, S. Jin and K. -K. Wong, "Hybrid Evolutionary-Based Sparse Channel Estimation for IRS-Assisted mmWave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1586-1601, March 2022.
[31] Y. Lin, S. Jin, M. Matthaiou and X. You, "Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems," in IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2320-2335, April 2022.
[32] Y. Lin, S. Jin, M. Matthaiou and X. You, "Conformal IRS-Empowered MIMO-OFDM: Channel Estimation and Environment Mapping," in IEEE Transactions on Communications, doi: 10.1109/TCOMM.2022.3174889.
[33] R.W. Heath, N. Gonza ́lez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, ”An overview of signal processing techniques for millimeter wave MIMO systems”, IEEE J. Sel. Areas Commun., vol. 10, no. 3, pp. 436-453, April 2016.
[34] K. Venugopal, A. Alkhateeb, N. González Prelcic and R. W. Heath, "Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Systems," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1996-2009, Sept. 2017.
[35] Q. Zhu, H. Li, R. Liu, M. Li and Q. Liu, "Hybrid Beamforming and Passive Reflection Design for RIS-Assisted mmWave MIMO Systems," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021.
[36] A. Alkhateeb, G. Leus and R. W. Heath, "Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.
[37] J. Rodríguez-Fernández, N. González-Prelcic, K. Venugopal and R. W. Heath, "Frequency-Domain Compressive Channel Estimation for Frequency-Selective Hybrid Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946-2960, May 2018.
[38] J. Lee, G. -T. Gil and Y. H. Lee, "Channel Estimation via Orthogonal Matching Pursuit for Hybrid MIMO Systems in Millimeter Wave Communications," in IEEE Transactions on Communications, vol. 64, no. 6, pp. 2370-2386, June 2016.
[39] Y. Han and J. Lee, "Two-stage compressed sensing for millimeter wave channel estimation," 2016 IEEE International Symposium on Information Theory (ISIT), 2016.
[40] K. Venugopal, A. Alkhateeb, R. W. Heath and N. G. Prelcic, "Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture," 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
[41] J. Rodríguez-Fernández, N. Gonzáiez-Prelcic and R. W. Heath, "Frequency-domain wideband channel estimation and tracking for hybrid MIMO systems," 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017.
[42] A. Alkhateeb, O. El Ayach, G. Leus and R. W. Heath, "Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831-846, Oct. 2014.
[43] J. P. González-Coma, J. Rodríguez-Fernández, N. González-Prelcic, L. Castedo and R. W. Heath, "Channel Estimation and Hybrid Precoding for Frequency Selective Multiuser mmWave MIMO Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 353-367, May 2018.
[44] J. Rodriguez-Fernandez and N. Gonzalez-Prelcic, "Channel Estimation for Frequency-Selective mmWave MIMO Systems with Beam-Squint," 2018 IEEE Global Communications Conference (GLOBECOM), 2018.
[45] M. R. Akdeniz et al., "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation," in IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164-1179, June 2014.
[46] X. Yu, J. Shen, J. Zhang and K. B. Letaief, "Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485-500, April 2016.
[47] X. Yu, J. Zhang and K. B. Letaief, "Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems," 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016, pp. 281-285.
[48] D. Zhang, Y. Wang, X. Li and W. Xiang, "Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems", IET Commun., vol. 13, no. 11, pp. 1557-1564, Jul. 2019.
[49] A. Alkhateeb, G. Leus and R. W. Heath, "Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6481-6494, Nov. 2015.
[50] W. Ni and X. Dong, "Hybrid Block Diagonalization for Massive Multiuser MIMO Systems," in IEEE Transactions on Communications, vol. 64, no. 1, pp. 201-211, Jan. 2016.
[51] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," in IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004.
[52] Q. Wu and R. Zhang, "Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts," in IEEE Transactions on Communications, vol. 68, no. 3, pp. 1838-1851, March 2020.
[53] Rodríguez-Fernández, Javier, et al. "Frequency-domain compressive channel estimation for frequency-selective hybrid mmWave MIMO systems." arXiv preprint arXiv:1704.08572 (2017).
[54] Y. Chen, D. Chen, T. Jiang and L. Hanzo, "Channel-Covariance and Angle-of-Departure Aided Hybrid Precoding for Wideband Multiuser Millimeter Wave MIMO Systems," in IEEE Transactions on Communications, vol. 67, no. 12, pp. 8315-8328, Dec. 2019.
[55] Z. Wang, M. Li, Q. Liu and A. L. Swindlehurst, "Hybrid Precoder and Combiner Design With Low-Resolution Phase Shifters in mmWave MIMO Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 256-269, May 2018.
[56] Rodríguez-Fernández, Javier. "Millimeter wave link configuration with hybrid MIMO architectures." Diss. 2020.
[57] Tewfik, Ahmed H., and Murat Torlak. "Millimeter Wave Link Configuration with Hybrid MIMO Architectures."
[58] S. Sun and T. S. Rappaport, "Millimeter Wave MIMO channel estimation based on adaptive compressed sensing," 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017.
[59] B. Dutta, R. Budhiraja and R. D. Koilpillai, "Low-Complexity Subspace-Based Multi-User Hybrid Precoding," in IEEE Communications Letters, vol. 23, no. 2, pp. 222-225, Feb. 2019.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明