博碩士論文 109232011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.2.6
姓名 關懷明(Huai-Ming Kuan)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 N 倍繞射效率之體積全像多工技術
(N Times Enhancement of Diffraction Efficiency of Volume Holographic Multiplexing Technology)
相關論文
★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡★ 體積全像光學元件之波長及角度選擇性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 傳統全像儲存之繞射效率會隨多工頁數增加而導致繞射效率呈現平方
倍數下降,也就是當多工頁數為 N 頁時繞射效率將下降 N 之平方倍,將導
致儲存容量與讀取速度受限。且當前技術在嘗試多工讀取資訊時,頁間串音
限制了被讀取頁面的間距不能夠太近,而過遠的頁面間距大幅增加馬達轉
矩的要求,使高速停頓讀取再高速移動到下一個讀取位置的過程成為不可
能的任務。此外,呈現 sinc 函數的位移選擇性迫使讀取位置必須要非常接
近寫入位置,才能夠讀出足夠的繞射光強,因而大幅提高馬達對位精準度的
需求。
本論文提出一套全像儲存技術,稱為 N 倍繞射效率之體積全像多工技
術,不僅可以改善多頁多工時繞射效率受 M/#限制之情形,還可以改善位移
選擇性的函數形狀。此全像儲存多工記錄時可將多頁資訊記錄於同一位置,
可大幅提升全像儲存之儲存密度,除提升儲存密度外還能隨位移讀取同一
位置之資訊,將大幅提升讀取時的效率。
摘要(英) As the number of multiplexed pages increases, the diffraction efficiency of
conventional holographic data storage systems will decrease with the square of
the diffraction efficiency. That is, when the number of multiplexed pages is N
pages, the diffraction efficiency will drop by the square of N, this resultsin limited
storage capacity and reading speed.
When conventional holographic data storage technology attempts to read
multiplexed information, the crosstalk between pages will limit reading pages and
make them too close together, thus, excessive page spacing greatly increases the
motor torque requirements. The process of stopping high-speed reading and then
moving to the next reading position at high speed becomes an impossible task.
Furthermore, the shifting selectivity of the sinc function forces the reading
position to be very close to the writing position in order to read the diffraction
beam, which increases the requirements for motor alignment accuracy.
This paper proposes a holographic data storage technology, called “N times
enhancement of diffraction efficiency of Volume Holographic Multiplexing
Technology”. This holographic data storage technology can record multiple pages
of information at the same location during multi-task recording, which can greatly
III
improve the storage capacity of holographic data storage. In addition to improving
storage capacity, it can also read information at the same location by shifting the
hologram, which will greatly elevate the reading efficiency.
關鍵字(中) ★ 體積全像
★ 全像儲存
★ 光學
★ 全像術
★ 布拉格簡併
★ M-number
關鍵字(英) ★ Volume Holographic
★ Holographic data storage
★ Optics
★ Holography
★ Bragg degeneracy
★ M-number
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 全像術簡介 2
1-3 全像術歷史與發展 3
第二章 原理介紹 5
2-1 全像術 5
2-2 布拉格條件 7
2-3 布拉格簡併 9
2-4 耦合波理論 11
2-4-1 布拉格匹配 16
2-5 相位疊加法 18
2-6 M-NUMBER與儲存系統多工限制 21
2-7 GERCHBERG–SAXTON迭代演算法 24
第三章 儲存架構設計 26
3-1 多頁疊加多工儲存系統架構設計 26
3-2 全像片選擇 28
3-3 參考光設計 29
3-4 架構記錄與讀取方法 30
3-5 GERCHBERG–SAXTON迭代演算法計算相位 35
第四章 儲存架構實驗驗證 39
4-1 實驗架構 39
4-2 訊號設計 41
4-3 實驗方法 41
4-3-1 第一組實驗結果 45
4-3-2 第二組實驗結果 46
4-3-3 第三組實驗結果 47
4-3-4 實驗結果與繞射效率比較 48
4-4 實驗方法改進 51
第五章 結論 53
參考文獻 55
中英文名詞對照表 59
參考文獻 [1] D. Reinsel, J. Gantz, J, Rydning, “The Digitization of the World - From Edge to Core,”
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataagewhitepaper.pdf.
[2] 台灣創新技術博覽會 2020, 「突破性立體全像儲存技術」,
https://www.futuretech.org.tw/futuretech/index.php?action=product_detail&prod_no=P0
008700005565.
[3] L. Dhar, K. Curtis, and T. Fäche, “Holographic data storage: Coming of age,” Nat.
Photonics 2, 403–405 (2008).
[4] E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in threedimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[5] K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From
Theory to Practical Systems (Wiley, 2010).
[6] 鄭智元、余業緯、孫慶成 (2014, 03)。〈同軸式全像資訊儲存系統之理論模型〉。科
儀新知,198,頁 73-84。
[7] T. Shimura, D. Kim, L. Xin, M. Kawasaki, Y. Hayashi, and R. Fukimura, “Phase
modulated time series signal holographic memory,” presented at the International
Workshop on Holography and Related Technologies, Penang, Malaysia, 5-7 Nov. 2019.
[8] G. Boston, K. Bradley, M. Casey, S. S. Cavaglieri, J. M. Fontaine, L. Gaustad, A. Häfner,
S. L. Molneryd, R. Ranft, D. Schüller, and N. Wallaszkovits, Handling and Storage of
Audio and Video Carriers (the International Association of Sound and Audiovisual
Archives, 2014).
[9] J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
[10] H. Coufal, and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in
Applied Optics, ed., A. Guenther, SPIE, (2002).
[11] D. Gabor, “ A new microscopic principle,” Nature 161, 777 (1948).
[12] E. N. Leith and J. Upatnieks, “Reconstruct ed Wavefronts and Communication Theory”
Opt. Soc. Am. 52, 1123-1130 (1962).
[13] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2,393
(1963).
[14] F. H. Mok, “ Angle-multiplexed storage of 5000 holograms in lithium niobate,”
[15] D. L. Staebler, et al, “Multiple storage and erasure of fixed holograms in Fe-doped
LiNbO3,” Appl. Phys. Lett. 26, 182 (1975).
[16] G. W. Burr, F. H. Mok, and D. Psalts, “Angle and space multiplexed storage using the 90∘
geometry,” Opt. Commun. 117, 49-55 (1995).
56
[17] J. F. Heanue, M.C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval
of digital data,” Science 265, 749 (1994).
[18] F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, “ Wavelength multiplexed reflection
matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[19] G. A. Rakuljic, V. Leyva, and A. Yariv, " Optical data storage by using orthogonal
wavelength-multiplexed volume hologram," Opt. Lett. 17, 1471-1473 (1992).
[20] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using
shift multiplexing,” Opt. Lett. 20, 782 (1995).
[21] G. Barbastathis, M. Levene, and D. Psaltis, “ Shift multiplexing with spherical reference
waves,” Appl. Opt. 35, 2403 (1996).
[22] C. Denz, G. Pauliat, and G. Roosen, " Volume hologram multiplexing using a deterministic
phase encoding method," Opt. Commun. 85, 171 (1991).
[23] C. C. Sun, R. H. Tsou, W. Chang, M.W. Chang and J.Y. Chang, " Random phase-coded
multiplexing in LiNbO3 for volume hologram storage by using a ground-glass," Optics
and Quantum Electronics 28, 1551-1561 (1996).
[24] Demetri Psaltis, Allen Pu, Michael Levene, Kevin Curtis, and George Barbastathis,
“Holographic storage using shift multiplexing,” Optics Letters 20, 782-784 (1995).
[25] A. P. Yakimovich, “Selective properties of 3-D holographic gratings using spherical wave
fronts,” Optics and Spectroscopy 47, 530-535 (1979).
[26] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference
waves,” Appl. Opt. 35, 2403-2417 (1996).
[27] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shiftmultiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[28] C. C. Sun, R. H. Tsou, W. Chang, M.W. Chang and J.Y. Chang, “Random phase-coded
multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt.
Quantum Electron. 28, 1551-1561 (1996).
[29] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding
in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[30] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based
on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012- 6015 (1995).
[31] P. Refregier and B. Javidi, “Optical image encryption using input and Fourier plane
random phase encoding,” Opt. Lett. 20, 767-769 (1995).
[32] B. Wang, and C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase
encoding encryption system,” Opt. Eng. 40, 1502-1506 (2001).
57
[33] C. C. Sun, W. C. Su, B. Wang and A. E. T. Chiou, “Lateral Shifting Sensitivity of a Ground
Glass for Holographic Encryption and Multiplexing Using Phase Conjugate Readout
Algorithm,” Opt. Commun. 191, 209-224 (2001).
[34] T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular
multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38,
748-750 (2013).
[35] G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and
R. M. Shelby, “Volume holographic data storage at an areal density of 250
Gigapixels/in2 ,” Opt. Lett. 26, 444–446 (2001).
[36] K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[37] K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center
for Magnetic Recording Research, University of California, San Diego, 26 October 2005.
[38] Ching-Cherng Sun, Wei-Chia Su, Bor Wang, and Yueh OuYang, “Diffraction selectivity
of holograms with random phase encoding,” Optics Communications 175, 67-74 (2000).
[39] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42,
1184-1185 (2003).
[40] Bor Wang, Ching-Cherng Sun, Wei-Chia Su, and Arthur E. T. Chiou, “Shift-tolerance
property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39,
4788-4793 (2000).
[41] Yeh-Wei Yu, Chih-Yuan Chen, and Ching-Cherng Sun, “Increase of signal-to-noise ratio
of a collinear holographic storage system with reference modulated by a ring lens array,”
Opt. Lett. 35, 1130-1132 (2010).
[42] Yeh-Wei Yu, Tun-Chien Teng, Shu-Ching Hsieh, Chih-Yuan Cheng, and Ching-Cherng
Sun, “Shifting selectivity of collinear volume holographic storage,” Optics
Communications 283, Issue 20, 3895–3900 (2010).
[43] Yeh-Wei Yu, Chih-Yuan Cheng, Tun-Chien Teng, Cheng-Hsien Chen, Shiuan-Huei Lin,
Bo-Rong Yu Y, Cheng C, Hsieh S, Teng T, and Sun C, “Point spread function by random
phase reference in collinear holographic storage,” Opt. Eng. 48(2), 020501
(February 10, 2009). doi:10.1117/1.3080725
[44] Yeh-Wei Yu, Chih-Yuan Cheng, Tun-Chien Teng, Cheng-Hsien Chen, Shiuan-Huei Lin,
Bo-Rong Wu, Che-Chih Hsu, Yi-Jiun Chen, Xuan-Hao Lee, Chi-Yu Wu, and ChingCherng Sun, “Method of compensating for pixel migration in volume holographic optical
disc (VHOD),” Opt. Express 20, 20863-20873 (2012).
[45] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論
文, 中華民國九十年。
[46] 陳政憲,無畫素串音之體積全像光儲存碟片之研究,國立中央大學光電所碩士論文,
58
中華民國九十四年。
[47] 鄧敦建,體積全像於光學元件及光儲存之研究,國立中央大學光電科學研究所博士
論文,中華民國九十五年。
[48] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for randomphase-encrypted volume holograms,” Appl. Opt. 43, 1728-1733 (2004).
[49] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,”
Opt. Lett. 21, 896-98 (1996).
[50] S. S. Orlov, W. P. , E. Bjornson, Y. Takashima, P. Sundaram, “High-transfer-rate highcapacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[51]R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase
from Image and Diffraction Plane Pictures,” OPTIK 35, 237-246 (1972).
[52] 陳願丞,隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析,國立中央大
學光電科學研究所碩士論文,中華民國一百一十年。
指導教授 余業緯 孫慶成(Yeh-Wei YU Ching-Cherng Sun) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明