博碩士論文 109523008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.116.118.214
姓名 徐漢驊(Han-Hua Hsu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(Utility-Based Volumetric Media Streaming under Error-Prone FoV Prediction)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著行動多媒體服務迅速的發展,尤其是超高畫質影像串流和虛擬實境的出現,前瞻多媒體應用,如元宇宙 (Metaverse) 等,逐漸成為行動服務的主流方向,議題的討論也越來越多。隨之而來的挑戰是,串流影像的同時嚴格維持超高畫質影像品質。也就是說,無線網路必須提共更低的延遲並擁有更高傳輸率的服務,這也是下一代行動技術持續討論的議題。為此,第三代夥伴計畫 (3rd Federation Partnership Project,3GPP) 的 5G 標準中定義了許多的功能和選項給更強大且更有彈性的無線網路環境,新的規格可以讓系統在流量、延遲以及可靠性三方面有更好的表現,但是同時也讓無線資源管理的複雜度直線上升。由於複雜度的上升,現有的傳統資源管理方法效果有限,所以我們希望透過增強式學習方法來解決 5G/6G 標準下無線網路資源管理的問題,並實現示範應用場域。。
摘要(英) With the rapid development of mobile multimedia services, especially the emergence of ultra-high-definition video streaming and virtual reality, forward-looking multimedia applications, such as Metaverse, have gradually become the mainstream direction of mobile services, and the discussion of the topic has become more and more more and more. The challenge that comes with it is to strictly maintain ultra-high-definition image quality while streaming. That is to say, wireless networks must provide services with lower latency and higher transmission rates, which are also ongoing discussions on next-generation mobile technologies. To this end, the 5G standard of the 3rd Generation Partnership Project (3GPP) defines many functions and options for a more powerful and resilient wireless network environment. The three aspects of delay and reliability have better performance, but at the same time, the complexity of wireless resource management has skyrocketed. Due to the increase in complexity, the existing traditional resource management methods have limited effect, so we hope to solve the problem of wireless network resource management under the 5G/6G standard through the reinforcement learning method, and realize the demonstration application field.
關鍵字(中) ★ 積體影像串流
★ 點雲
★ 資源分配
★ 機器學習
★ 邊緣運算
★ 六自由度
關鍵字(英) ★ volumetric streaming
★ point cloud
★ ressource allocation
★ confidence score
★ machine learning
★ MEC
★ 6DoF
★ Utility
★ QoE
論文目次 1 Introduction...........................................1
1.1 Volumetric Media Streaming...........................1
1.2 Motivation...........................................2
1.3 Contribution.........................................3
1.4 Framework............................................3
2 Related Works..........................................5
2.1 Point Cloud Streaming................................5
2.2 Prediction of User FoV in Volumaetric Streaming......6
2.3 User’s QoE Evaluation................................7
3 System Model and Problem Formulation...................8
3.1 Point Cloud Streaming Simulation Framework...........8
3.2 Design of Prediction Models..........................9
3.3 Tile-based Utility Calculation.......................10
4 Likelihood Map Generation and Resource Allocation......12
4.1 Likelihood Map Generation............................12
4.2 Resource Allocation of Tiles.........................13
5 Experimental Results...................................16
5.1 Output of Prediction Models..........................16
5.2 Utility Improvement of Likelihood Map................17
5.3 User Experience Improvement..........................18
6 Conclusions............................................21
6.1 Conclusion...........................................21
6.2 Future Work..........................................21
Bibliography.............................................22
參考文獻 [1] Yassin Alkhalili, Tobias Meuser, and Ralf Steinmetz. A survey of volumetric content streaming approaches. In 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), pages 191–199, 2020.
[2] Eman Ramadan, Arvind Narayanan, Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Feng Qian, and Zhi-Li Zhang. Case for 5g-aware video streaming applications. In Proceedings of the 1st Workshop on 5G Measurements, Modeling, and Use Cases, 5G-MeMU ’21, page 27–34, New York, NY, USA, 2021. Association for Computing Machinery.
[3] Serhan Gul, Sebastian Bosse, Dimitri Podborski, Thomas Schierl, and Cornelius Hellge. Kalman filter-based head motion prediction for cloud-based mixed reality. In Proceedings of the 28th ACM International Conference on Multimedia, MM ’20, page 3632–3641, New York, NY, USA, 2020. Association for Computing Machinery.
[4] Serhan Gul, Dimitri Podborski, Thomas Buchholz, Thomas Schierl, and Cornelius Hellge. Low-latency cloud-based volumetric video streaming using head motion prediction. In Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, NOSSDAV ’20, page 27–33, New York, NY, USA, 2020. Association for Computing Machinery.
[5] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. An overview of ongoing point cloud compression standardization activities: videobased (v-pcc) and geometry-based (g-pcc). APSIPA Transactions on Signal and Information Processing, 9:e13, 2020.
[6] Jounsup Park, Philip A. Chou, and Jenq-Neng Hwang. Rate-utility optimized streaming of volumetric media for augmented reality. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):149–162, 2019.
[7] Jounsup Park, Philip A. Chou, and Jenq-Neng Hwang. Volumetric media streaming for augmented reality. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2018.
[8] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. Toward practical volumetric video streaming on commodity smartphones. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications, pages 135–140, 2019.
[9] Jeroen van der Hooft, Maria Torres Vega, Tim Wauters, Christian Timmerer, Ali C. Begen, Filip De Turck, and Raimund Schatz. From capturing to rendering: Volumetric media delivery with six degrees of freedom. IEEE Communications Magazine, 58(10):49–55, 2020.
[10] Jeroen van der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and Hermann Hellwagner. Towards 6dof http adaptive streaming through point cloud compression. In Proceedings of the 27th ACM International Conference on Multimedia, MM ’19, page 2405–2413, New York, NY, USA, 2019. Association for Computing Machinery.
[11] Jie Li, Cong Zhang, Zhi Liu, Wei Sun, and Qiyue Li. Joint communication and computational resource allocation for qoe-driven point cloud video streaming. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pages 1–6, 2020.
[12] Yiqun Xu, Wei Hu, Shanshe Wang, Xinfeng Zhang, Shiqi Wang, Siwei Ma, and Wen Gao. Cluster-based point cloud coding with normal weighted graph fourier transform. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1753–1757, 2018.
[13] Mohammad Hosseini and Christian Timmerer. Dynamic adaptive point cloud streaming. In Proceedings of the 23rd Packet Video Workshop, pages 25–30, 2018.
[14] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, PabloCesar, Philip A Chou, Robert A Cohen, Maja Krivokuca, S ´ ebastien Lasserre, Zhu ´Li, et al. Emerging mpeg standards for point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):133–148, 2018.
[15] Shishir Subramanyam, Irene Viola, Alan Hanjalic, and Pablo Cesar. User centered adaptive streaming of dynamic point clouds with low complexity tiling. In Proceedings of the 28th ACM International Conference on Multimedia, MM ’20, page 3669–3677, New York, NY, USA, 2020. Association for Computing Machinery.
[16] Xinwei Chen, Ali Taleb Zadeh Kasgari, and Walid Saad. Deep learning for contentbased personalized viewport prediction of 360-degree vr videos. IEEE Networking Letters, 2(2):81–84, 2020.
[17] Dario DR Morais, Lucas S Althoff, Ravi Prakash, Marcelo M Carvalho, and Mylene CQ Farias. A content-based viewport prediction model. ` Electronic Imaging, 2021(9):255–1, 2021.
[18] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A. Chou. 8i voxelized full bodies, version 2 – a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059/M74006, January 2017.
[19] Charles Corbiere, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and Patrick Perez. Confidence estimation via auxiliary models. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2021.
[20] Shaoang Li, Changyang She, Yonghui Li, and Branka Vucetic. Constrained deep reinforcement learning for low-latency wireless vr video streaming. In 2021 IEEE Global Communications Conference (GLOBECOM), pages 01–06, 2021.
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明