參考文獻 |
[1] 道安資訊查詢網, “https://roadsafety.tw/Dashboard/Custom?type= 統計快覽圖
表.”
[2] 交通部高速公路局-ITS 智慧運輸系統, “https://transport-curation.nat.gov.tw/
museum-ITS2020/ITS.html.”
[3] 黃郁凱, “基於 CNN 與 LSTM 機器學習模型之交通事件預測與分析:以桃園 市為例,” 碩士論文, 國立中央大學通訊工程學系. <https://hdl.handle.net/11296/ hmtkj9/>, 2020.
[4] H. Ren, Y. Song, J. Liu, Y. Hu, and J. Lei, “A deep learning approach to the prediction of short-term traffic accident risk,” arXiv preprint arXiv:1710.09543, 2017.
[5] C. Chen, X. Fan, C. Zheng, L. Xiao, M. Cheng, and C. Wang, “Sdcae: Stack denoising convolutional autoencoder model for accident risk prediction via traffic big data,” in 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). IEEE, 2018, pp. 328–333.
[6] Z. Yuan, X. Zhou, and T. Yang, “Hetero-convlstm: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 984–992.
[7] S. Moosavi, M. H. Samavatian, S. Parthasarathy, R. Teodorescu, and R. Ramnath, “Accident risk prediction based on heterogeneous sparse data: New dataset and insights,” in Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2019, pp. 33–42.
[8] G. Dai, C. Ma, and X. Xu, “Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU,” IEEE Access, vol. 7, pp. 143 025–143 035, 2019.
[9] H. Ren, Y. Song, J. Wang, Y. Hu, and J. Lei, “A deep learning approach to the citywide traffic accident risk prediction,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 3346–3351.
[10] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for citywide crowd flows prediction,” in Thirty-first AAAI conference on artificial intelligence, 2017.
[11] A. Nigam and S. Srivastava, “Macroscopic Traffic Stream Variables Prediction with Weather Impact Using Hybrid CNN-LSTM model,” in Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, 2021, pp. 1–6.
[12] Z. Zheng, Y. Yang, J. Liu, H.-N. Dai, and Y. Zhang, “Deep and embedded learning approach for traffic flow prediction in urban informatics,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3927–3939, 2019.
[13] C. Chen, K. Li, S. G. Teo, X. Zou, K. Li, and Z. Zeng, “Citywide traffic flow predic- tion based on multiple gated spatio-temporal convolutional neural networks,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 4, pp. 1–23, 2020.
[14] H. Li, X. Li, L. Su, D. Jin, J. Huang, and D. Huang, “Deep Spatio-temporal Adaptive 3D Convolutional Neural Networks for Traffic Flow Prediction,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 2, pp. 1–21, 2022.
[15] R. E. AlMamlook, K. M. Kwayu, M. R. Alkasisbeh, and A. A. Frefer, “Compari- son of machine learning algorithms for predicting traffic accident severity,” in 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT). IEEE, 2019, pp. 272–276.
[16] B. Geyik and M. Kara, “Severity prediction with machine learning methods,” in
2020 international congress on human-computer interaction, optimization and robotic applications (HORA). IEEE, 2020, pp. 1–7.
[17] Y. Qu, Z. Lin, H. Li, and X. Zhang, “Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big data,” IEEE Access, vol. 7, pp. 170 106–170 115, 2019.
[18] Z. Li, G. Xiong, Y. Tian, Y. Lv, Y. Chen, P. Hui, and X. Su, “A multi-stream feature fusion approach for traffic prediction,” IEEE Transactions on Intelligent Transporta- tion Systems, 2020.
[19] Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A. Muller, E. Sackinger, P. Simard et al., “Learning algorithms for classification: A comparison on handwritten digit recognition,” Neural networks: the statistical mechanics perspective, vol. 261, no. 276, p. 2, 1995.
[20] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions,” Journal of big Data, vol. 8, no. 1, pp. 1–74, 2021.
[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[22] Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhou, “Lc-rnn: A deep learning model for traffic speed prediction.” in IJCAI, vol. 2018, 2018, p. 27th.
[23] Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, and B. Y. Zhao, “Deep graph con- volutional networks for incident-driven traffic speed prediction,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1665–1674.
[24] Keras: the Python deep learning API, “https://keras.io.”
[25] scikit-learn - Machine Learning in Python, “https://scikit-learn.org/stable/.”
[26] 臺北市道路交通事故斑點圖, “https://data.gov.tw/dataset/136123.”
[27] 交通部數據匯流平臺, “https://ticp.motc.gov.tw/ConvergeProj/index.”
[28] 氣象相關資料集, “https://ci.taiwan.gov.tw/dsp/dataset_weather.aspx.”
[29] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.
[30] Python implementation of CNN multi channel input example, “https://developpa- per.com/python-implementation-of-cnn-multi-channel-input-example/.”
[31] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.
[32] sklearn.tree.DecisionTreeClassifier – parameter, “https:// scikit-learn.org/ stable/ modules/generated/sklearn.tree.DecisionTreeClassifier.html.”
[33] sklearn.ensemble.RandomForestClassifier–parameter, “https://scikit-learn.org/sta- ble/modules/generated/sklearn.ensemble.RandomForestClassifier.html.”
[34] XGBoost Parameters, “https://xgboost.readthedocs.io/en/stable/parameter.html.” |