參考文獻 |
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107, Jun. 2011.
[2] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-Wave massive MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 836–869, 2nd Quart., 2018.
[3] S. K. Yong and C. C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 1–10, Jan. 2007.
[4] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in 60-GHz integrated circuits and systems for wireless communications,” Proc. IEEE, vol. 99, no. 8, pp. 1390–1436, Aug. 2011.
[5] R. Daniels and R. W. Heath, Jr., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[6] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
[7] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T. S. Rappaport, ‘‘28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2013, pp. 1–6.
[8] T.S. Rappaport, et al., “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access Journal, vol. 1, no. 1, pp. 335-349, May. 2013.
[9] G. R. MacCartney, Jr., J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3948–3953.
[10] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Areas Commun., vol. 8, no. 5, pp. 742–758, Oct. 2014.
[11] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
[12] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, ‘‘A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart., 2018.
[13] A. Alkhateeb, M. Jianhua, N. González-Prelcic, and R. W. Heath Jr., “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.
[14] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Commun. Mag., vol. 52, no. 12, pp. 110–121, Dec. 2014.
[15] F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors, and F. Tufvesson, ‘‘Scaling up MIMO: Opportunities and challenges with very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[16] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., ‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[17] S. Kutty and D. Sen, “Beamforming for millimeter wave communications: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 949–973, 2nd Quart., 2016.
[18] T. Gong, N. Shlezinger, S. S. Ioushua, M. Namer, Z. Yang, and Y. C. Eldar, “RF chain reduction for MIMO systems: A hardware prototype,” IEEE Syst. J., vol. 14, no. 4, pp. 5296–5307, Dec. 2020.
[19] J. Wang et al., “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1390–1399, Oct. 2009.
[20] L. Zhou and Y. Ohashi, “Efficient codebook-based MIMO beamforming for millimeter-wave WLANs,” in Proc. IEEE Int. Symp. Pers. Ind. Mobile Radio Commun. (PIMRC), Sep. 2012, pp. 1885–1889.
[21] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave MIMO systems,” in Proc. 2012 IEEE International Conf. Commun., pp. 3724–3729.
[22] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, pp. 186-194, Jan. 2015.
[23] O. El Ayach, R. W. Heath, Jr., S. Rajagopal, and Z. Pi, “Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3476–3480.
[24] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic, and R. W. Heath, “Channel estimation and hybrid combining for mmWave: Phase shifters or switches?” in Proc. Inf. Theory Appl. Workshops, Feb. 2015, pp. 90-97.
[25] S. Park, A. Alkhateeb, and R. W. Heath, “Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2907–2920, May 2017.
[26] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005.
[27] W.-L. Hung, C.-H. Chen, C.-C. Liao, C.-R. Tsai, A.-Y. Wu, “Low-Complexity Hybrid Precoding Algorithm based on Orthogonal Beamforming Codebook,” in Proc. IEEE Workshop Signal Process. Syst. (SiPS), pp. 1–5, Oct. 2015.
[28] D. Zhang, P. Pan, R. You, and H. Wang, “SVD-based low-complexity hybrid precoding for millimeter-wave MIMO systems,” IEEE Commun. Lett., vol. 22, no. 10, pp. 2176–2179, Oct. 2018.
[29] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.
[30] Y. Wang and W. Zou, “Low complexity hybrid precoder design for millimeter wave MIMO systems,” IEEE Commun. Lett., vol. 23, no. 7, pp. 1259–1262, Jul. 2019.
[31] M. Alouzi, F. Chan, and C. D′Amours, “Low Complexity Hybrid Precoding and Combining for Millimeter Wave Systems,” IEEE Access, pp. 95911-95924, Vol. 9., Jul. 2021.
[32] F. Sohrabi and W. Yu, ‘‘Hybrid digital and analog beamforming design for large-scale antenna arrays,’’ IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016.
[33] R. Zhang, W. Zou, Y. Wang, and M. Cui, ‘‘Hybrid precoder and combiner design for single-user mmWave MIMO systems,’’ IEEE Access, vol. 7, pp. 63818–63828, 2019.
[34] J. Li, L. Xiao, X. Xu, and S. Zhou, ‘‘Robust and low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems,’’ IEEE Commun. Lett., vol. 20, no. 6, pp. 1140–1143, Jun. 2016.
[35] Y. Zhu and T. Yang, ‘‘Low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.
[36] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid beamforming via the Kronecker decomposition for the millimeter-wave massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 2097–2114, Sep. 2017.
[37] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
[38] Z. Wang, M. Li, X. Tian, and Q. Liu, “Iterative hybrid precoder and combiner design for mmWave multiuser MIMO systems,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1581–1584, Jul. 2017.
[39] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid precoder and combiner design with low-resolution phase shifters in mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 256–269, May 2018.
[40] W. Ni and X. Dong, “Hybrid Block Diagonalization for Massive Multiuser MIMO Systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201-211, Jan. 2016.
[41] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461-471, Feb. 2004.
[42] X. Wu, D. Liu, and F. Yin, “Hybrid beamforming for multi-user massive MIMO systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3879–3891, Sep. 2018.
[43] F. Khalid, “Hybrid beamforming for millimeter wave massive multiuser MIMO systems using regularized channel diagonalization,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 705–708, Jun. 2019.
[44] J. Zhan and X. Dong, “Interference Cancellation Aided Hybrid Beamforming for mmWave Multi-User Massive MIMO Systems,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2322–2336, Mar. 2021.
[45] H. Bolcskei; D. Gesbert; and A.J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, no. 2, pp. 225–234, Feb. 2002.
[46] A. F. Molisch et al., “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.
[47] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1432–1443, Jul. 2017.
[48] M. Ma, N. T. Nguyen, and M. Juntti, “Closed-form hybrid beamforming solution for spectral efficiency upper bound maximization in mmWave MIMO-OFDM systems,” in 2021 IEEE 94th Vehicular Technology Conference (VTC-Fall), Sep. 2021, pp. 1–5.
[49] T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, “Hybrid beamforming for millimeter wave systems using the MMSE criterion,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3693–3708, May. 2019.
[50] J. Du, W. Xu, C. Zhao, and L. Vandendorpe, “Weighted spectral efficiency optimization for hybrid beamforming in multiuser massive MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9698–9712, Oct. 2019.
[51] Y. Liu and J. Wang, “Low-complexity OFDM-based hybrid precoding for multiuser massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 263–266, Mar. 2020.
[52] J. Jung, W. Lee, Y. Lee, J. Kim, and H. Song, “Improved hybrid beamforming for mmWave multi-user massive MIMO,” Computers, Materials & Continua, vol. 67, no.3, pp. 3057–3070, 2021.
[53] H. Yuan, J. An, N. Yang, K. Yang, and T. Q. Duong, “Low complexity hybrid precoding for multiuser millimeter wave systems over frequency selective channels,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 983–987, Jan. 2019.
[54] D. Zhang, Y. Wang, X. Li, and W. Xiang, ‘‘Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems,’’ IET Commun., vol. 13, no. 11, pp. 1557–1564, Jul. 2019.
[55] S. Gherekhloo, K. Ardah, and M. Haardt, “Hybrid beamforming design for downlink MU-MIMO-OFDM millimeter-wave systems,” in Proc. IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Jun. 2020, pp. 1–5.
[56] Y. Chen, D. Chen, T. Jiang, and L. Hanzo, “Channel-covariance and angle-of-departure aided hybrid precoding for wideband multiuser millimeter wave MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8315–8328, Dec. 2019.
[57] Y. Sun, H. Wang, M. Yuan, T. Zhu, and A. Kawoya, “Training-Based Hybrid Precoding Scheme for Multiuser Massive MIMO-OFDM,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3729–3732, Nov. 2021.
[58] R. Chen, Z. Shen, J. G. Andrews, and R. W. Heath, Jr., “Multimode transmission for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3294–3302, Jul. 2008.
[59] Y.-U. Jang, H. M. Kwon, and Y. H. Lee, “Adaptive mode selection for multiuser MIMO downlink systems,” in Proc. Veh. Technol. Conf., vol. 4, pp. 2003–2007, May. 2006.
[60] Z. Li, S. Han, and A. F. Molisch, “Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4288–4303, Jul. 2017.
[61] G. Kwon and H. Park, “Limited feedback hybrid beamforming for multimode transmission in wideband millimeter wave channel,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4008–4022, Jun. 2020.
[62] S. Wang, M. He, and R. Ruby, “SVM-Based Optimization on the Number of Data Streams for Massive MIMO Systems,” IEEE Systems Journal., Jan. 2022, pp. 1-4
[63] Y. Yuan and L. Zhu, “Application scenarios and enabling technologies of 5G,” China Communications, vol. 11, no. 11, pp. 69-79, Nov. 2014.
[64] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, ‘‘Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 870–913, 2nd Quart., 2018.
[65] Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262, Jun. 2016.
[66] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, and L. Castedo, “Channel estimation and hybrid precoding/combining for frequency selective multiuser mmWave systems,” in Proc. Global Commun. Conf., Dec. 2017, pp. 1–6.
[67] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, L. Castedo, and R. W Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, May 2018.
[68] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[69] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, Feb. 2016.
[70] B. Farhang-Boroujeny, Q. Spencer, and L. Swindlehurst, “Layering techniques for space-time communications in multi-user networks,” in Proc. IEEE Veh. Technol. Conf., vol. 2, pp. 1339–1342, Oct. 2003.
[71] L. Arévalo, R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Uplink block diagonalization for massive MIMO-OFDM systems with distributed antennas,” in Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP), pp. 889-892, Dec. 2015.
[72] R. L. Choi, M. T. Lvrlac, R. D. Murch, and J. A. Nossek, “Joint transmit and receive multi-user MIMO decomposition approach for the downlink of multi-user MIMO systems,” in Proc. IEEE Veh. Technol. Conf., Oct. 2003, pp. 409-413.
[73] H. An, M. Mohaisen, D. Han, and K. Chang, “Coordinated transmit and receive processing with adaptive multi-stream selection,” in Proc. IEEE Int. Conf. Communications, Networking, and Mobile Computing (WiCOM), Sep. 2010, pp. 1–5.
[74] P.-H. Lee and Y.-P. Lin, ‘‘Hybrid MIMO-OFDM for downlink multiuser communications over millimeter channels with no instantaneous feedback,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.
[75] R. Zhang, W. Zou, Y. Wang, M. Cui, and X. Sun, “Alternate hybrid precoding algorithm for wideband millimetre wave massive MIMO systems,” IET Commun., vol. 14, no. 8, pp. 1261– 1267, May. 2020.
[76] X. Yu, J. Zhang, and K. B. Letaief, “Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems,” in Proc. 50th Asilomar Conf. Signals Syst. Comput., Nov. 2016, pp. 281–285.
[77] G. H. Golub and C. F. Van Loan, “Matrix Computations,” John Hopkins Uni. Press, 4th edition, 2013.
[78] M. Holmes, A. Gray, and C. Isbell, “Fast SVD for large-scale matrices,” in Proc. Workshop Efficient Mach. Learn. NIPS, 2007, pp. 249–252.
[79] S. Hur et al., “Wideband spatial channel model in an urban cellular environments at 28 GHz,” in Proc. Eur. Conf. Antennas Propag. (EuCAP), Apr. 2015, pp. 1–5.
[80] S. Wu, S. Hur, K. Whang, and M. Nekovee, ‘‘Intra-cluster characteristics of 28 GHz wireless channel in urban micro street canyon,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.
[81] J. Ko et al., “Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5853–5868, Sep. 2017.
[82] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz (Release 16),” 3GPP Technical Report (TR) 38.901 V16.1.0, 2019.
[83] V. Stankovic, and M. Haardt, “Generalized design of multi-user MIMO precoding matrices,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 953–961, Mar. 2008. |