博碩士論文 109423019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.17.150.89
姓名 許家祥(Chia-Hsiang Hsu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 使用Transformer及圖嵌入同時預測物品與時間集合
(Simultaneous prediction of items and time sets using Transformer and Graph embedding)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 在電子商務系統中,推薦一直是一個重要的課題,也因此現今有許多研究專注於如何針對一般序列或session-based序列來推薦客戶下一購買物品,但這些研究卻沒有同時預測下一物品的可能購買時間,少了此時間資訊,將造成經營者不知道應該何時向客戶採取推薦行動的困境。此外,近幾年全局的用戶資訊也廣為被研究使用,因為加入全局資訊可以挖掘出更多可利用的協作訊息,幫助做更有效的推薦。所以本文利用用戶及物品的交互建立全局資訊,改善局部資訊的不足,並運用購買序列資料中的時間資訊,同時預測客戶下一購買物品及購買時間。本文是第一個提出以用戶購買資訊,同時預測購買物品及購買時間,同時結合圖嵌入形成的全局資訊及局部資訊,並利用 Transformer 幫助預測,本研究在真實世界的電子商務資料集進行實驗,大量的實驗表明我們提出的深度網路架構性能優於幾種最先進的推薦方法。
摘要(英) Recommendation has always been an important topic in the field of e-commerce. Therefore, many studies today focus on how to recommend customers′ next purchases for sequential or session-based sequences, but these studies do not also predict when the next item is likely to be purchased. Without this timing information, operators are faced with the dilemma of wondering when they should make a recommendation to their customers. Furthermore, global user information has been extensively studied and used in recent years, as adding global information can explore more collaborative information that can be used to help make more effective recommendations. Therefore, in this study, we exploit user interactions with items to construct global information to improve local information deficiencies, And use the time information in the purchase sequence data to predict the customer′s next purchase and purchase time. This paper first proposes to use user purchase information, combined with global information and local information formed by graph embedding, and then use transformer to help predict, and finally get the predicted purchase items and purchase time. This study conducts experiments on a real-world e-commerce dataset. Extensive experiments show that our proposed deep network architecture outperforms state-of-the-art recommendation methods.
關鍵字(中) ★ 順序推薦
★ 深度學習
★ 神經網絡
★ Transformer
★ 全局訊息
★ 項目和時間預測
關鍵字(英) ★ Sequential recommendation
★ Deep Learning
★ Neural Network
★ Transformer
★ Global information
★ Item and Time Prediction
論文目次 Contents
摘要 i
ABSTRACT ii
List of Figures iv
List of Tables v
1. Introduction 1
2. Related work 8
2-1 Rating prediction 8
2-2 Top-N Recommendation 9
2-3 Graph embedding 12
3. Proposed approach 15
3-1 Model structure 15
3-2 Local information network 16
3-3 Global information network 20
3-4 Output 23
4. Experiments and results 25
4-1 Datasets 25
4-2 Data preprocessing 26
4-3 Experimental setting 26
4-4 Baseline setting 27
4-5 Evaluation metrics 28
4-6 Experimental results 30
4-7 Sensitivity analysis 38
4-8 Case study 40
5. Conclusion 43
5-1 Limitations and future work 44
Reference 46
參考文獻 Reference
[1] Z. Zhao et al., “Social-Aware Movie Recommendation via Multimodal Network Learning,” IEEE Trans. Multimed., vol. 20, no. 2, pp. 430–440, Feb. 2018, doi: 10.1109/TMM.2017.2740022.
[2] S. C. Hidayati, C.-C. Hsu, Y.-T. Chang, K.-L. Hua, J. Fu, and W.-H. Cheng, “What Dress Fits Me Best? Fashion Recommendation on the Clothing Style for Personal Body Shape,” in Proceedings of the 26th ACM international conference on Multimedia, New York, NY, USA, 15 2018, pp. 438–446. doi: 10.1145/3240508.3240546.
[3] H. Wang, F. Zhang, X. Xie, and M. Guo, “DKN: Deep Knowledge-Aware Network for News Recommendation,” in Proceedings of the 2018 World Wide Web Conference, Republic and Canton of Geneva, CHE, 10 2018, pp. 1835–1844. doi: 10.1145/3178876.3186175.
[4] L. Wu, C. Quan, C. Li, Q. Wang, B. Zheng, and X. Luo, “A Context-Aware User-Item Representation Learning for Item Recommendation,” ACM Trans. Inf. Syst., vol. 37, no. 2, p. 22:1-22:29, 31 2019, doi: 10.1145/3298988.
[5] T. Li, Y. Ma, J. Xu, B. Stenger, C. Liu, and Y. Hirate, “Deep Heterogeneous Autoencoders for Collaborative Filtering,” in 2018 IEEE International Conference on Data Mining (ICDM), Nov. 2018, pp. 1164–1169. doi: 10.1109/ICDM.2018.00153.
[6] R.-C. Chen and Hendry, “User Rating Classification via Deep Belief Network Learning and Sentiment Analysis,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 3, pp. 535–546, Jun. 2019, doi: 10.1109/TCSS.2019.2915543.
[7] D.-H. Pham and A.-C. Le, “Learning multiple layers of knowledge representation for aspect based sentiment analysis,” Data Knowl. Eng., vol. 114, pp. 26–39, Mar. 2018, doi: 10.1016/j.datak.2017.06.001.
[8] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A Simple Convolutional Generative Network for Next Item Recommendation,” in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, New York, NY, USA, 30 2019, pp. 582–590. doi: 10.1145/3289600.3290975.
[9] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen, “Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19 2018, pp. 1734–1743. doi: 10.1145/3219819.3220014.
[10] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-item Recommendation with Sequential Hypergraphs,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA: Association for Computing Machinery, 2020, pp. 1101–1110. Accessed: Mar. 22, 2022. [Online]. Available: https://doi.org/10.1145/3397271.3401133
[11] S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, and J. Zhu, “Personal recommendation using deep recurrent neural networks in NetEase,” in 2016 IEEE 32nd International Conference on Data Engineering (ICDE), May 2016, pp. 1218–1229. doi: 10.1109/ICDE.2016.7498326.
[12] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural Attentive Session-based Recommendation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, New York, NY, USA, 6 2017, pp. 1419–1428. doi: 10.1145/3132847.3132926.
[13] X. Chen et al., “Sequential Recommendation with User Memory Networks,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, New York, NY, USA, Summer 2018, pp. 108–116. doi: 10.1145/3159652.3159668.
[14] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, New York, NY, USA, Summer 2018, pp. 565–573. doi: 10.1145/3159652.3159656.
[15] Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou, “Behavior sequence transformer for e-commerce recommendation in Alibaba,” in Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, New York, NY, USA, 5 2019, pp. 1–4. doi: 10.1145/3326937.3341261.
[16] Y. Matsumoto, R. Harakawa, T. Ogawa, and M. Haseyama, “Music Video Recommendation Based on Link Prediction Considering Local and Global Structures of a Network,” IEEE Access, vol. 7, pp. 104155–104167, 2019, doi: 10.1109/ACCESS.2019.2930713.
[17] F. S. Gohari, F. S. Aliee, and H. Haghighi, “A Dynamic Local–Global Trust-aware Recommendation approach,” Electron. Commer. Res. Appl., vol. 34, p. 100838, Mar. 2019, doi: 10.1016/j.elerap.2019.100838.
[18] T. Wang, D. Shi, Z. Wang, S. Xu, and H. Xu, “MRP2Rec: Exploring Multiple-Step Relation Path Semantics for Knowledge Graph-Based Recommendations,” IEEE Access, vol. 8, pp. 134817–134825, 2020, doi: 10.1109/ACCESS.2020.3011279.
[19] Z. Y. Khan, Z. Niu, S. Sandiwarno, and R. Prince, “Deep learning techniques for rating prediction: a survey of the state-of-the-art,” Artif. Intell. Rev., vol. 54, no. 1, pp. 95–135, Jan. 2021, doi: 10.1007/s10462-020-09892-9.
[20] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What Your Images Reveal: Exploiting Visual Contents for Point-of-Interest Recommendation,” in Proceedings of the 26th International Conference on World Wide Web, Republic and Canton of Geneva, CHE, Autumn 2017, pp. 391–400. doi: 10.1145/3038912.3052638.
[21] D. Hyun, C. Park, M.-C. Yang, I. Song, J.-T. Lee, and H. Yu, “Review Sentiment-Guided Scalable Deep Recommender System,” in The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, New York, NY, USA, 27 2018, pp. 965–968. doi: 10.1145/3209978.3210111.
[22] P. Li, Z. Wang, Z. Ren, L. Bing, and W. Lam, “Neural Rating Regression with Abstractive Tips Generation for Recommendation,” in Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 2017, pp. 345–354. doi: 10.1145/3077136.3080822.
[23] S. Xing, F. Liu, Q. Wang, X. Zhao, and T. Li, “A hierarchical attention model for rating prediction by leveraging user and product reviews,” Neurocomputing, vol. 332, pp. 417–427, Mar. 2019, doi: 10.1016/j.neucom.2018.12.027.
[24] H. Liu et al., “Hybrid neural recommendation with joint deep representation learning of ratings and reviews,” Neurocomputing, vol. 374, pp. 77–85, Jan. 2020, doi: 10.1016/j.neucom.2019.09.052.
[25] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural Collaborative Filtering,” in Proceedings of the 26th International Conference on World Wide Web, Republic and Canton of Geneva, CHE, Autumn 2017, pp. 173–182. doi: 10.1145/3038912.3052569.
[26] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems,” Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, Art. no. 1, Feb. 2017, Accessed: Mar. 22, 2022. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/10747
[27] X. Wang and Y. Wang, “Improving Content-based and Hybrid Music Recommendation using Deep Learning,” in Proceedings of the 22nd ACM international conference on Multimedia, New York, NY, USA, Autumn 2014, pp. 627–636. doi: 10.1145/2647868.2654940.
[28] Z. Cheng, Y. Ding, L. Zhu, and M. Kankanhalli, “Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews,” in Proceedings of the 2018 World Wide Web Conference, Republic and Canton of Geneva, CHE, 23 2018, pp. 639–648. doi: 10.1145/3178876.3186145.
[29] S. Seo, J. Huang, H. Yang, and Y. Liu, “Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction,” in Proceedings of the Eleventh ACM Conference on Recommender Systems, New York, NY, USA, 27 2017, pp. 297–305. doi: 10.1145/3109859.3109890.
[30] D. Liu, J. Li, B. Du, J. Chang, and R. Gao, “DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 25 2019, pp. 344–352. doi: 10.1145/3292500.3330906.
[31] Y. Lu, R. Dong, and B. Smyth, “Coevolutionary Recommendation Model: Mutual Learning between Ratings and Reviews,” in Proceedings of the 2018 World Wide Web Conference, Republic and Canton of Geneva, CHE, 23 2018, pp. 773–782. doi: 10.1145/3178876.3186158.
[32] N. Chairatanakul, T. Murata, and X. Liu, “Recurrent Translation-Based Network for Top-N Sparse Sequential Recommendation,” IEEE Access, vol. 7, pp. 131567–131576, 2019, doi: 10.1109/ACCESS.2019.2941083.
[33] J. Li, Z. Xu, Y. Tang, B. Zhao, and H. Tian, “Deep Hybrid Knowledge Graph Embedding for Top-N Recommendation,” in Web Information Systems and Applications, Cham, 2020, pp. 59–70. doi: 10.1007/978-3-030-60029-7_6.
[34] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks,” ArXiv151106939 Cs, Mar. 2016, Accessed: Mar. 22, 2022. [Online]. Available: http://arxiv.org/abs/1511.06939
[35] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks,” in Proceedings of the Eleventh ACM Conference on Recommender Systems, New York, NY, USA, 27 2017, pp. 130–137. doi: 10.1145/3109859.3109896.
[36] “TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation | Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.” https://dl.acm.org/doi/abs/10.1145/3397271.3401319 (accessed Mar. 22, 2022).
[37] Y. Liu, Z. Ren, W.-N. Zhang, W. Che, T. Liu, and D. Yin, “Keywords Generation Improves E-Commerce Session-based Recommendation,” in Proceedings of The Web Conference 2020, New York, NY, USA: Association for Computing Machinery, 2020, pp. 1604–1614. Accessed: Mar. 22, 2022. [Online]. Available: https://doi.org/10.1145/3366423.3380232
[38] J. A. Whittaker and M. G. Thomason, “A Markov chain model for statistical software testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10, pp. 812–824, Oct. 1994, doi: 10.1109/32.328991.
[39] Q. Liu, S. Wu, and L. Wang, “Multi-Behavioral Sequential Prediction with Recurrent Log-Bilinear Model,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 6, pp. 1254–1267, Jun. 2017, doi: 10.1109/TKDE.2017.2661760.
[40] A. Vaswani et al., “Attention Is All You Need,” ArXiv170603762 Cs, Dec. 2017, Accessed: Mar. 22, 2022. [Online]. Available: http://arxiv.org/abs/1706.03762
[41] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation,” in 2018 IEEE International Conference on Data Mining (ICDM), Nov. 2018, pp. 197–206. doi: 10.1109/ICDM.2018.00035.
[42] R. Ren et al., “Sequential Recommendation with Self-Attentive Multi-Adversarial Network,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA: Association for Computing Machinery, 2020, pp. 89–98. Accessed: Mar. 22, 2022. [Online]. Available: https://doi.org/10.1145/3397271.3401111
[43] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” arXiv, arXiv:1301.3781, Sep. 2013. doi: 10.48550/arXiv.1301.3781.
[44] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online learning of social representations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 24 2014, pp. 701–710. doi: 10.1145/2623330.2623732.
[45] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13 2016, pp. 855–864. doi: 10.1145/2939672.2939754.
[46] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018, doi: 10.1109/TKDE.2018.2807452.
[47] H.-S. Sheu and S. Li, “Context-aware Graph Embedding for Session-based News Recommendation,” in Fourteenth ACM Conference on Recommender Systems, New York, NY, USA: Association for Computing Machinery, 2020, pp. 657–662. Accessed: Mar. 22, 2022. [Online]. Available: https://doi.org/10.1145/3383313.3418477
[48] H. Xu, C. Huang, Y. Xu, L. Xia, H. Xing, and D. Yin, “Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks,” in 2020 IEEE International Conference on Data Mining (ICDM), Nov. 2020, pp. 701–710. doi: 10.1109/ICDM50108.2020.00079.
[49] R. Qiu, H. Yin, Z. Huang, and T. Chen, “GAG: Global Attributed Graph Neural Network for Streaming Session-based Recommendation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA: Association for Computing Machinery, 2020, pp. 669–678. Accessed: Mar. 22, 2022. [Online]. Available: https://doi.org/10.1145/3397271.3401109
[50] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale Information Network Embedding,” in Proceedings of the 24th International Conference on World Wide Web, Republic and Canton of Geneva, CHE, 18 2015, pp. 1067–1077. doi: 10.1145/2736277.2741093.
[51] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian Personalized Ranking from Implicit Feedback,” arXiv, arXiv:1205.2618, May 2012. doi: 10.48550/arXiv.1205.2618.
[52] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980.
[53] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[54] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” arXiv, arXiv:1412.3555, Dec. 2014. doi: 10.48550/arXiv.1412.3555.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2022-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明