博碩士論文 109522090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.118.31.67
姓名 劉鎮霆(Jhen-Ting Liou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 用於預測抗菌肽多種功能類別的多標籤分類器
(Multi-label Classifiers for Predicting Multiple Functional Classes of Antimicrobial Peptides)
相關論文
★ 空氣汙染物與疾病關聯性之研究與利用深度學習預測疾病★ 利用質譜儀資料快速檢測金黃色葡萄球菌之抗藥性
★ 根據質譜儀資料辨識大腸桿菌抗藥性之特徵峰值★ 蛋白質賴氨酸丙二酰化修飾作用位點之預測系統
★ 基於機器學習方法的抗微生物肽活性預測 及特徵分析★ 利用機器學習預測濁水溪沖積扇區域之地下水砷汙染
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 抗生素之濫用導致抗藥性細菌的快速出現,對於全球公共衛生造成嚴重威脅,使得尋找新的治療方法來輔助或改善這一問題變為更加急迫。由於抗菌肽對抗微生物病原體作用機制之特殊性,使其較不易引發抗藥性,幾乎所有生命體的先天免疫系統都可以產生抗菌肽。許多抗菌肽的作用對象是廣泛的,對於各種傳染性微生物如細菌、病毒、真菌和寄生蟲都具有活性。但抗菌肽的發展受到高昂的發開及製造成本限制,因此,如果能夠更準確的預測抗菌肽的功能類別,不僅可以有效降低開發和製造成本,還可以為新藥的發開提供更多的資訊。在這項研究中,我們通過二元相關性和算法適應方法建構了多標籤分類器用來預測抗菌肽對於細菌、哺乳動物細胞、真菌、病毒和癌細胞是否具有有效活性。此外我們還採用了向前特徵選取法來找出較為重要的特徵,從不同的面相探討這些特徵,並利用這些特徵重新訓練分類器,對於細菌、哺乳動物細胞、真菌、病毒和癌細胞的分類在獨立測試集上曲線下面積可以分別達到0.9066, 0.8568, 0.8492, 0.9126 以及0.8639,而子集準確率為0.4978。結果顯示我們的模型對於區分功能類別可以達到不錯的表現。
摘要(英) The rapid emergence of drug-resistant bacteria due to the abuse of antibiotics is a serious threat to global public health, which makes finding new therapeutics to assist or improve this problem more urgent. Owing to the specificity of the mechanism of action of antimicrobial peptides (AMPs) against microbial pathogens, AMPs are not readily leading to the occurrence of resistance, and AMPs can be produced by the innate immune system of almost all life forms. Many AMPs are broad-spectrum with effective activities against various infectious microorganisms, such as bacteria, viruses, fungi and parasites. But the development of AMPs is greatly limited by high development and manufacturing costs. Therefore, if the functional classes of AMPs can be more accurately predicted, it can not only effectively reduce the development and manufacturing costs, but also provide more information for the development of new drugs. In this study, we constructed multi-label classifiers by means of binary relevance and algorithm adaptation methods to predict whether AMPs have effective activities against bacteria, mammalian cells, fungi, virus and cancer cells. In addition, we also adopted forward feature selection to find informative features, explore these features from different aspects and use these features to retrain the classifiers, the retrained classifiers had the performance that under the curves (AUCs) of antibacterial, mammalian cells, antifungal, antiviral and anticancer are 0.9066, 0.8568, 0.8492, 0.9126 and 0.8639 on the independent testing data respectively and subset accuracy is 0.4978. The results show that our model can achieve good performance for distinguishing functional classes.
關鍵字(中) ★ 多標籤分類器
★ 抗菌肽
★ 功能類別
關鍵字(英) ★ multi-label classifier
★ antimicrobial peptide
★ functional classes
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter1 Introduction 1
1.1 Background 1
1.2 Related Works 2
1.3 Motivation and Goal 4
Chapter2 Materials and Methods 5
2.1 Data Source and Preprocessing 5
2.2 Feature Extraction 6
2.2.1 Amino Acid Composition (AAC) 7
2.2.2 Pseudo Amino Acid Composition (PAAC) 7
2.2.3 Composition/Transition/Distribution (CTD) 7
2.3 Machine Learning Models 9
2.3.1 Random Forest (RF) 9
2.3.2 Convolutional Neural Network (CNN) 10
2.4 Evaluation Metrics 10
Chapter3 Results 12
3.1 Observation of Basic Properties 12
3.2 Performances of Models 16
3.3 Feature Selection 17
3.4 Analysis of Informative Features 23
3.5 Comparison with Other Studies 31
Chapter4 Conclusions 36
References 37
參考文獻 1. Bahar, A.A. and D. Ren, Antimicrobial peptides. Pharmaceuticals, 2013. 6(12): p. 1543-1575.
2. Lei, J., et al., The antimicrobial peptides and their potential clinical applications. American journal of translational research, 2019. 11(7): p. 3919.
3. Magana, M., et al., The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 2020. 20(9): p. e216-e230.
4. Wang, S., et al., Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International journal of molecular sciences, 2016. 17(5): p. 603.
5. Hancock, R.E. and H.-G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology, 2006. 24(12): p. 1551-1557.
6. Steinstraesser, L., et al., Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 2011. 216(3): p. 322-333.
7. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clinical microbiology reviews, 2006. 19(3): p. 491-511.
8. Pasupuleti, M., A. Schmidtchen, and M. Malmsten, Antimicrobial peptides: key components of the innate immune system. Critical reviews in biotechnology, 2012. 32(2): p. 143-171.
9. Schneider, V.A., et al., Imaging the antimicrobial mechanism (s) of cathelicidin-2. Scientific reports, 2016. 6(1): p. 1-11.
10. Ebenhan, T., et al., Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed research international, 2014. 2014.
11. Yeung, A.T., S.L. Gellatly, and R.E. Hancock, Multifunctional cationic host defence peptides and their clinical applications. Cellular and Molecular Life Sciences, 2011. 68(13): p. 2161-2176.
12. Boman, H., Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine, 2003. 254(3): p. 197-215.
13. Ling, R., et al., In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides, 2020. 130: p. 170328.
14. Van der Weerden, N.L., M.R. Bleackley, and M.A. Anderson, Properties and mechanisms of action of naturally occurring antifungal peptides. Cellular and molecular life sciences, 2013. 70(19): p. 3545-3570.
15. Chiangjong, W., S. Chutipongtanate, and S. Hongeng, Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application. International Journal of Oncology, 2020. 57(3): p. 678-696.
16. Javadpour, M.M., et al., De novo antimicrobial peptides with low mammalian cell toxicity. Journal of medicinal chemistry, 1996. 39(16): p. 3107-3113.
17. Moretta, A., et al., Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 2021. 11: p. 453.
18. Zhang, M.-L. and Z.-H. Zhou, A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 2013. 26(8): p. 1819-1837.
19. Zhang, M.-L. and Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition, 2007. 40(7): p. 2038-2048.
20. Ghamrawi, N. and A. McCallum. Collective multi-label classification. in Proceedings of the 14th ACM international conference on Information and knowledge management. 2005.
21. Dayhoff, J.E., Neural network architectures: an introduction. 1990: Van Nostrand Reinhold Co.
22. Biau, G. and E. Scornet, A random forest guided tour. Test, 2016. 25(2): p. 197-227.
23. Meher, P.K., et al., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific reports, 2017. 7(1): p. 1-12.
24. Chung, C.-R., et al., Characterization and identification of antimicrobial peptides with different functional activities. Briefings in bioinformatics, 2020. 21(3): p. 1098-1114.
25. Grønning, A.G., T. Kacprowski, and C. Scheele, MultiPep: a hierarchical deep learning approach for multi-label classification of peptide bioactivities. Biology Methods and Protocols, 2021. 6(1): p. bpab021.
26. Jhong, J.-H., et al., dbAMP 2.0: Updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic acids research, 2022. 50(D1): p. D460-D470.
27. Wang, G., X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, 2016. 44(D1): p. D1087-D1093.
28. Pirtskhalava, M., et al., DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic acids research, 2021. 49(D1): p. D288-D297.
29. Thomas, S., et al., CAMP: a useful resource for research on antimicrobial peptides. Nucleic acids research, 2010. 38(suppl_1): p. D774-D780.
30. Zhao, X., et al., LAMP: a database linking antimicrobial peptides. PloS one, 2013. 8(6): p. e66557.
31. Lee, H.-T., et al., A large-scale structural classification of antimicrobial peptides. BioMed research international, 2015. 2015.
32. UniProt: the universal protein knowledgebase in 2021. Nucleic acids research, 2021. 49(D1): p. D480-D489.
33. Rives, A., et al., Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 2021. 118(15): p. e2016239118.
34. Suzek, B.E., et al., UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics, 2007. 23(10): p. 1282-1288.
35. Fu, L., et al., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012. 28(23): p. 3150-3152.
36. Chen, Z., et al., iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018. 34(14): p. 2499-2502.
37. Bhasin, M. and G.P. Raghava, Classification of nuclear receptors based on amino acid composition and dipeptide composition. Journal of Biological Chemistry, 2004. 279(22): p. 23262-23266.
38. Chou, K.-C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005. 21(1): p. 10-19.
39. Chou, K.C., Prediction of protein cellular attributes using pseudo‐amino acid composition. Proteins: Structure, Function, and Bioinformatics, 2001. 43(3): p. 246-255.
40. Cai, C., et al., SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic acids research, 2003. 31(13): p. 3692-3697.
41. Cai, C., et al., Enzyme family classification by support vector machines. Proteins: Structure, Function, and Bioinformatics, 2004. 55(1): p. 66-76.
42. Dubchak, I., et al., Prediction of protein folding class using global description of amino acid sequence. Proceedings of the National Academy of Sciences, 1995. 92(19): p. 8700-8704.
43. Dubchak, I., et al., Recognition of a protein fold in the context of the SCOP classification. Proteins: structure, function, and bioinformatics, 1999. 35(4): p. 401-407.
44. Han, L.Y., et al., Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. Rna, 2004. 10(3): p. 355-368.
45. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 2011. 12: p. 2825-2830.
46. Selvaraju, R.R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision. 2017.
47. Abadi, M., et al. {TensorFlow}: a system for {Large-Scale} machine learning. in 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016.
48. Xu, J., et al., Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Briefings in Bioinformatics, 2021. 22(5): p. bbab083.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明