博碩士論文 87324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.31.187
姓名 王少甫(Hsa-Fu Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 雙載子電晶體在一維和二維空間上模擬的比較
(Comparison of One-dimensional and Two-dimensional Simulation in Bipolar Transistors)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用
★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用★ 探討分離式簡化電路模型在半導體元件模擬上的效益
★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用★ 二維半導體元件模擬的電流和電場分析
★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析★ 元件分割法及其在二維互補式金氧半導體元件之模擬
★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究如何增進雙載子電晶體元件(BJT)的模擬效率。在傳統的方式上,以二維空間模擬雙載子電晶體須要龐大的資料量和計算量,尤其是在混階(mixed-level)模擬應用上,往往有大量的主動元件。有鑑於此,我們將發展一維空間上的雙載子電晶體模擬來取代二維空間上的模擬。本論文著重研究一維空間上的模擬方法,並發展新的類似一維空間的模擬方式克服一維空間模擬上的缺點。在論文內所用的模擬方式為等效電路法(equivalent circuit approach),等效電路法將柏松方程式和電子電洞連續方程式轉換成等效電路,在混階電路的模擬上有廣泛的應用。在混階電路模擬上,以本論文所發展的一維空間元件取代二維空間元件的模擬將有助於節省計算時間、存取資料量以及程式的維護。而新的類似一維空間的模擬方式可以有效的解決一維空間模擬的缺點,使模擬結果更接近二維空間的模擬,並且不大量增加模擬的計算量。藉由此類似一維空間的模擬方式的發展,可以將其應用到其他適合的二維元件模擬,增進模擬的效率。
摘要(英) This thesis studies on enhancing the efficiency of simulation in bipolar transistor. A new one-dimensional simulation will substitute conventional two-dimensional simulation in bipolar transistor. Some new numerical method will be presented in this thesis. The fundamental method of device simulation is equivalent circuit approach. In such an approach, Poisson’’s equation and continuity equations are formulated into a subcircuit format suitable for general circuit simulators. This numerical method is applied well to mixed-level device and circuit simulations. In order to enhance the efficiency of mixed-level simulation, the substitute one-dimensional simulation is developed. This one-dimensional simulation is more convenient and powerful than two-dimensional simulation. Then, another new quasi-one-dimensional bipolar transistor modeling will improve the practicability and accuracy of device simulations. According to the technique of one- and quasi-one dimensional simulation in bipolar transistors, it is helpful for large mixed-level circuit simulation and design.
關鍵字(中) ★ 雙載子電晶體
★ 柏松方程式
★ 連續方程式
★ 一維
關鍵字(英) ★ bipolar
★ Poisson's equation
★ continuity equation
★ one-dimension
論文目次 1. Introduction
2. Equivalent Circuit Approach and Two-dimensional
Simulation in Bipolar Transistor
2.1 Equivalent circuit approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Poisson's and Drift-Diffusion Equations for Semiconductor
Device Simulation
2.1.2 Equivalent Circuit Approach
2.2 Two-dimensional Bipolar Transistor Simulation . . . . . . . . . . .
2.2.1 Equivalent Circuit Approach in 2D BJT Simulation
2.2.2 Structure, Mesh setting and Boundary Condition of 2D BJT
Simulation
2.2.3 Simulation Results
2.2.4 Shortage of two-dimensional Bipolar Transistor Modeling
2.3 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. One-dimensional and Quasi-one-dimensional Simulation
in Bipolar Transistor
3.1 One-dimensional Bipolar Transistor Simulation . . . . . . . . . . . . .
3.1.1 One-dimensional Simulation and its Difficulty
3.1.2 Adding Constant Current and Voltage as Base Boundary Condition
3.1.3 Simulation Results
3.1.4 Shortage of one-dimensional Bipolar Transistor Modeling
3.2 Quasi-one-dimensional Bipolar Transistor Simulation . . . . . . . . .
3.2.1 Idea of Quasi-one-dimensional Simulation and its Difficulty
3.2.2 Mixed one- and two-dimensional Simulation
3.2.3 Mesh setting and Boundary Condition
3.2.4 Simulation Results
3.3 Comparison of 1D, Quasi-1D, and 2D BJT Simulation . . . . . . . .
3.3.1 Simulation Parameters
3.3.2 Analysis of Simulation Results
3.3.3 Superiority of Quasi-one-dimensional Simulation
3.4 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Application in Mixed-level Circuit Simulation
4.1 The Inverter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Superiority of Quasi-one-dimensional BJT in
Mixed-level Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Conclusion
參考文獻 [1] Chin-Lin Teng, "An Equivalent Circuit Approach to Mixed-level Device and Circuit Simulation." Master Thesis, Institute of EE, NCU, 1997.
[2] P.C.H. Chan and C.T. Sah, "Exact Equivalent Circuit Model of Steady State Characterization of Semiconductor Device with Multiple-Energy-Level Recombination Centers." IEEE Transactions Electron Devices, vol. ED-26, no.6, pp. 924-936, 1979.
[3] C.T. Sah, "New Integral Representations of Circuit Models and Elements for the Circuit Technique for Semiconductor Device Analysis." Solid-State Electron, vol.30, no.12, pp. 1277-1281, 1987.
[4] Y. Leblebici, M.S. Unlu, S. -M. Kang, and B.M. Onat, Transient Simulation of Heterojuction Photodiodes-Part I: Computational Methods. J. Lightwave Technology, vol.13, pp. 396-405, 1995.
[5] Y. Leblebici, M.S. Unlu, S. -M. Kang, and H. Morkoc, "One-dimensional Transient Device Simulation Using a Direct Method Circuit Simulator." IEEE Int. Symposium on Circuits and Systems, vol.2, pp. 895-898, 1992.
[6] R.E. Bank, W.M. Coughran, Jr., W. Fichtner, E.H. Grosse, D.J. Rose, and R.K. Smith, "Transient Simulation of Silicon Devices and Circuits." IEEE Trans. CAD, vol. CAD-4, pp. 436-451, 1985.
[7] R.E. Bank, D.J. Rose, and W. Fichtner, "Numerical Methods for Semiconductor Device Simulation." IEEE Transactions Electron Devices, vol. ED-30, pp. 1031-1041, 1983.
[8] J.F. B?rgler, R.E. Bank, W. Fichtner, and R.K. Smith, "A new Discretizayion Scheme for the Semiconductor Current Continuity Equations." IEEE Trans. CAD, vol.8, 1989, in press.
[9] W.M. Coughran, Jr., M.R. Pinto, and R.K. Smith, "Computational Methods for Steady-state CMOS Latchup Simulation." IEEE Trans. CAD, vol. 7, pp. 307-323, 1988.
[10] P.A. Markowich, The Stationary Semiconductor Equations. Springer-Verlag, Vienna, 1986.
[11] D. Scharfetter and H.K. Gummel, "Large-signal Analysis of a Silicon Read Diode Oscillator." IEEE Transactions Electron Devices, vol. ED-16, pp. 64-77, 1969.
[12] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, 1962.
[13] Gokhale, B.V., "Numerical Solution for a One-dimension Silicon n-p-n Transistors.", IEEE Trans., vol. ED-17, pp.594-602, 1970.
[14] L. L. Liou, C. I. Huang, "Using Constant Base Current as a Boundary Condition for One-dimensional AlGaAs/GaAs Heterojunction Bipolar Transistor Simulation." Electronics Letters, vol.26, pp. 1501-1503, 1990.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2000-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明