博碩士論文 109522126 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.225.55.42
姓名 陳庭萱(Ting-Hsuan Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合深度學習和生物階層式分類架構的種子辨識系統
(Seed Recognition System Combining Deep Learning with Biological Hierarchical Classification Architecture)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-13以後開放)
摘要(中) 本論文提出一個結合深度學習和生物階層式分類架構的種子分類器,用於大類別數的種子辨識,我們先對種子影像進行影像前處理,擷取出單顆完整種子影像後,輸入階層架構的殘差神經網路,搭配生物分類法的科別、屬別、種別,作為三階層的分類流程,首先將種子影像進入科別的神經網路模型,分類出該種子的科別後,再將影像輸入進此科別的屬別層網路,最後再進入此分類器的第三層,進行種別的分類,輸出最終決策。我們以深度學習與階層式架構對含有衍生種的784類種子與560類的種子樣本進行分類實驗,分別可達73.13%與92.33%的辨識率,與單一神經網路(Resnet50)和混合式神經網路架構(Resnet50+Siamese)的12.7%和31.33%的辨識率相比,實驗結果顯示我們的方法具有明顯優勢,且階層式架構將分類流程分開的方式,能夠經由階層判斷分類錯誤的原因,彌補深度學習的不可解釋性。
摘要(英) This paper proposes a seed classifier that combines deep learning and biological hierarchical classification architecture for seed identification of large number of categories. Residual neural network, combined with the family, genus, and species of the biological taxonomy, as a three-level classification process, first enter the seed image into the neural network model of the family, and after classifying the family of the seed, then The image is input into the category layer network of this class, and finally enters the third layer of the classifier to classify the category and output the final decision. We use deep learning and hierarchical architecture to classify 784 types of seeds and 560 types of seed samples containing derived species, and the recognition rates can reach 73.13% and 92.33%, respectively. Compared with the recognition rate of 12.7% and 31.33% of the network architecture (Resnet50+Siamese), the experimental results show that our method has obvious advantages, and the hierarchical architecture separates the classification process, which can determine the cause of the classification error through the hierarchy, Compensate for the uninterpretability of deep learning.
關鍵字(中) ★ 辨識系統
★ 階層式架構
★ 深度神經網路
★ 遷移學習
關鍵字(英)
論文目次 摘要 .............................................................................................................................................I
Abstract ...................................................................................................................................... II
謝誌 .......................................................................................................................................... III
目錄 .......................................................................................................................................... IV
圖目錄 .....................................................................................................................................VII
表目錄 ....................................................................................................................................... X
第一章、緒論 ............................................................................................................................ 1
1.1 研究背景 .................................................................................................................... 1
1.2 研究目標 .................................................................................................................... 3
1.3 論文架構 .................................................................................................................... 5
第二章、文獻回顧 .................................................................................................................... 6
2.1 影像切割 .................................................................................................................... 6
2.1.1 機率神經網路 ................................................................................................ 6
2.1.2 Yolo物件切割 ................................................................................................ 7
2.2 基於深度學習的影像分類(Image classification)...................................................... 9
2.2.1 Resnet 殘差神經網路 ................................................................................ 10
2.3 遷移學習 .................................................................................................................. 13
2.4 階層式分類網路架構 .............................................................................................. 17
2.5 生物分類法(Taxonomy)........................................................................................... 22
第三章、階層式種子分類系統 .............................................................................................. 24
3.1 階層分類系統架構 .................................................................................................. 25
3.2 遷移學習之階層深度神經網路模型 ...................................................................... 29
3.3 多類別種子辨識系統離散事件建模 ...................................................................... 33
3.4 大類別數種子辨識的階層分類系統高階合成 ...................................................... 38
第四章、系統整合與實驗 ...................................................................................................... 42
4.1 開發環境與實驗資料庫 .......................................................................................... 42
4.2 階層式殘差神經網路分類實驗 .............................................................................. 47
4.2.1 階層式殘差神經網路分器性能驗證 .......................................................... 50
4.2.2 階層式殘差神經網路分類器相似形種子種類驗證 .................................. 53
4.3 階層式遷移學習分類實驗 ...................................................................................... 56
第五章、結論與未來展望 ...................................................................................................... 60
5.1 結論 .......................................................................................................................... 60
5.2 未來展望 .................................................................................................................. 61
參考文獻 .................................................................................................................................. 62
參考文獻 [1] T. J. Stohlgren, D. Binkley, G. W. Chong, M. A. Kalkhan, L. D. Schell, K. A. Bull, Y. Otsuki, G. Newman, M. Bashkin, and Y. Son, "Exotic plant species invade hot spots of native plant diversity," Ecological monographs, vol. 69, no. 1, 1999, pp. 25-46.
[2] L.-M. Hsu, Y.-Z. Lin, Y.-Z. Liu, and C.-Y. Wang, "Distribution of exotic weeds in coastal areas of southern and eastern Taiwan during summer," PLANT PROTECTION BULLETIN-TAIPEI-, vol. 48, no. 2, 2006, p. 129.
[3] P. Ongsulee, "Artificial intelligence, machine learning and deep learning," in 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE), 2017, pp. 1-6.
[4] Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proceedings of ICML workshop on unsupervised and transfer learning, 2012, pp. 17-36.
[5] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE transactions on medical imaging, vol. 35, no. 5, 2016, pp. 1285-1298.
[6] J. Huixian, "The analysis of plants image recognition based on deep learning and artificial neural network," IEEE Access, vol. 8, 2020, pp. 68828-68841.
[7] M. Rahali, H. Loukil, and M. S. Bouhlel, "Analysis of image compression approaches using wavelet transform and Kohonen’s network," in International Workshop Soft Computing Applications, 2016, pp. 474-486.
[8] B. A. Ashqar, B. S. Abu-Nasser, and S. S. Abu-Naser, "Plant seedlings classification using deep learning," 2019.
[9] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[10] Q. Zhang, X. Zhang, X. Mu, Z. Wang, R. Tian, X. Wang, and X. Liu, "Recyclable waste image recognition based on deep learning," Resources, Conservation and Recycling, vol. 171, 2021, p. 105636.
[11] I. A. Quiroz and G. H. Alférez, "Image recognition of Legacy blueberries in a Chilean smart farm through deep learning," Computers and Electronics in Agriculture, vol. 168, 2020, p. 105044.
[12] Z. Chen, H. Lu, S. Tian, J. Qiu, T. Kamiya, S. Serikawa, and L. Xu, "Construction of a hierarchical feature enhancement network and its application in fault recognition," IEEE Transactions on Industrial Informatics, vol. 17, no. 7, 2020, pp. 4827-4836.
[13] Z. Zhen, H. Fang, and J. Liu, "The hierarchical brain network for face recognition," PloS one, vol. 8, no. 3, 2013, p. e59886.
[14] A. D. Gordon, "A review of hierarchical classification," Journal of the Royal Statistical Society: Series A (General), vol. 150, no. 2, 1987, pp. 119-137.
[15] C.-C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan, "Emotion recognition using a hierarchical binary decision tree approach," Speech Communication, vol. 53, no. 9-10, 2011, pp. 1162-1171.
[16] K. Zeng, M. Ning, Y. Wang, and Y. Guo, "Hierarchical clustering with hard-batch triplet loss for person re-identification," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13657-13665.
[17] Q. Xie, D. Li, J. Xu, Z. Yu, and J. Wang, "Automatic detection and classification of sewer defects via hierarchical deep learning," IEEE Transactions on Automation Science and Engineering, vol. 16, no. 4, 2019, pp. 1836-1847.
[18] D. Gupta, S. Suman, and A. Ekbal, "Hierarchical deep multi-modal network for medical visual question answering," Expert Systems with Applications, vol. 164, 2021, p. 113993.
[19] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, "Hierarchical deep click feature prediction for fine-grained image recognition," IEEE transactions on pattern analysis and machine intelligence, 2019.
[20] J.-H. Kim, B.-G. Kim, P. P. Roy, and D.-M. Jeong, "Efficient facial expression recognition algorithm based on hierarchical deep neural network structure," IEEE access, vol. 7, 2019, pp. 41273-41285.
[21] Z. Cao, J. Lu, S. Cui, and C. Zhang, "Zero-shot Handwritten Chinese Character Recognition with hierarchical decomposition embedding," Pattern Recognition, vol. 107, 2020, p. 107488.
[22] O. P. Sharma, Plant taxonomy. Tata McGraw-Hill Education, 1993.
[23] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[24] I. Melekhov, J. Kannala, and E. Rahtu, "Siamese network features for image matching," in 2016 23rd International Conference on Pattern Recognition (ICPR), 2016, pp. 378-383.
[25] P. Forczmański and A. Markiewicz, "Two-stage approach to extracting visual objects from paper documents," Machine Vision and Applications, vol. 27, no. 8, 2016, pp. 1243-1257.
[26] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, "Selective search for object recognition," International journal of computer vision, vol. 104, no. 2, 2013, pp. 154-171.
[27] C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, "R-CNN for small object detection," in Asian conference on computer vision, 2016, pp. 214-230.
[28] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440-1448.
[29] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, vol. 28, 2015.
[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788.
[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, "Ssd: Single shot multibox detector," in European conference on computer vision, 2016, pp. 21-37.
[32] J. Lee, J. Bang, and S.-I. Yang, "Object detection with sliding window in images including multiple similar objects," in 2017 international conference on information and communication technology convergence (ICTC), 2017, pp. 803-806.
[33] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020.
[34] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, 2015, pp. 436-444.
[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248-255.
[36] A. S. B. Reddy and D. S. Juliet, "Transfer learning with ResNet-50 for malaria cell-image classification," in 2019 International Conference on Communication and Signal Processing (ICCSP), 2019, pp. 0945-0949.
[37] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400, 2013.
[38] G. Koch, R. Zemel, and R. Salakhutdinov, "Siamese neural networks for one-shot image recognition," in ICML deep learning workshop, 2015, vol. 2, p. 0.
[39] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, "Signature verification using a" siamese" time delay neural network," Advances in neural information processing systems, vol. 6, 1993.
[40] S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′05), 2005, vol. 1, pp. 539-546.
[41] K. Ahrabian and B. BabaAli, "Usage of autoencoders and Siamese networks for online handwritten signature verification," Neural computing and applications, vol. 31, no. 12, 2019, pp. 9321-9334.
[42] S. Wu, Y. Wu, D. Cao, and C. Zheng, "A fast button surface defect detection method based on Siamese network with imbalanced samples," Multimedia Tools and Applications, vol. 78, no. 24, 2019, pp. 34627-34648.
[43] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr, "Fully-convolutional siamese networks for object tracking," in European conference on computer vision, 2016, pp. 850-865.
[44] R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality reduction by learning an invariant mapping," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′06), 2006, vol. 2, pp. 1735-1742.
[45] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep transfer learning," in International conference on artificial neural networks, 2018, pp. 270-279.
[46] K. Weiss, T. M. Khoshgoftaar, and D. Wang, "A survey of transfer learning," Journal of Big data, vol. 3, no. 1, 2016, pp. 1-40.
[47] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE transactions on neural networks, vol. 22, no. 2, 2010, pp. 199-210.
[48] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, "Deep domain confusion: Maximizing for domain invariance," arXiv preprint arXiv:1412.3474, 2014.
[49] M. Arbel, A. Korba, A. Salim, and A. Gretton, "Maximum mean discrepancy gradient flow," Advances in Neural Information Processing Systems, vol. 32, 2019.
[50] M. Long, Y. Cao, J. Wang, and M. Jordan, "Learning transferable features with deep adaptation networks," in International conference on machine learning, 2015, pp. 97-105.
[51] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, and B. K. Sriperumbudur, "Optimal kernel choice for large-scale two-sample tests," Advances in neural information processing systems, vol. 25, 2012.
[52] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein generative adversarial networks," in International conference on machine learning, 2017, pp. 214-223.
[53] I. Z. Mukti and D. Biswas, "Transfer learning based plant diseases detection using ResNet50," in 2019 4th International Conference on Electrical Information and Communication Technology (EICT), 2019, pp. 1-6.
[54] M. M. Ghazi, B. Yanikoglu, and E. Aptoula, "Plant identification using deep neural networks via optimization of transfer learning parameters," Neurocomputing, vol. 235, 2017, pp. 228-235.
[55] B. J. Fowers, "An Aristotelian framework for the human good," Journal of Theoretical and Philosophical Psychology, vol. 32, no. 1, 2012, p. 10.
[56] A. Bidram and A. Davoudi, "Hierarchical structure of microgrids control system," IEEE Transactions on Smart Grid, vol. 3, no. 4, 2012, pp. 1963-1976.
[57] B. H. Kwasnik, "The role of classification in knowledge representation and discovery," 1999.
[58] X. Wang, T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in 2009 IEEE 12th international conference on computer vision, 2009, pp. 32-39.
[59] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression," in 2010 ieee computer society conference on computer vision and pattern recognition-workshops, 2010, pp. 94-101.
[60] F. Cheng, J. Yu, and H. Xiong, "Facial expression recognition in JAFFE dataset based on Gaussian process classification," IEEE Transactions on Neural Networks, vol. 21, no. 10, 2010, pp. 1685-1690.
[61] E. Hoffer and N. Ailon, "Deep metric learning using triplet network," in International workshop on similarity-based pattern recognition, 2015, pp. 84-92.
[62] Z. Kuang, Z. Li, T. Zhao, and J. Fan, "Deep multi-task learning for large-scale image classification," in 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 2017, pp. 310-317.
[63] G. G. Simpson, Principles of animal taxonomy. Columbia University Press, 1961.
[64] C. Linnaeus, Species plantarum. Impensis GC Nauk, 1799.
[65] 邵广昭, 彭镜毅, and 吴文哲, "台湾物种名录," ed, 2010.
指導教授 陳慶瀚 審核日期 2022-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明