參考文獻 |
Agrawal, M., Khan, A. U., & Shukla, P. K. (2019). Stock price prediction using technical indicators: A predictive model using optimal deep learning. Learning, 6(2), 7.
Akhigbe, A., & Madura, J. (1996). Dividend policy and corporate performance. Journal of Business Finance & Accounting, 23(9‐10), 1267-1287.
Boyd, J. H., & Jagannathan, R. (1994). Ex-dividend price behavior of common stocks. The Review of Financial Studies, 7(4), 711-741.
Campbell, J. A., & Beranek, W. (1955). Stock price behavior on ex-dividend dates. The Journal of Finance, 10(4), 425-429.
Chang, W. H., Chen, C. Y., & Yu, C. S. (2008, July). A Study of Ubiquitous Information Seeking Behavior of the Investor in Taiwan′s Stock Market. In 2008 First IEEE International Conference on Ubi-Media Computing (pp. 469-473). IEEE.
Chia-Cheng, C., Liu, Y., & Hsu, T. H. (2019). An analysis on investment performance of machine learning: an empirical examination on Taiwan stock market. International Journal of Economics and Financial Issues, 9(4), 1.
Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert systems with applications, 40(10), 3970-3983.
Di, X. (2014). Stock trend prediction with technical indicators using SVM. Standford: Leland Stanford Junior University.
Elton, E. J., and M. J. Gruber. (1970). Marginal stockholder tax rates and the clientele effect, Review of Economics and Statistics 52, 68–74.
Elton, E. J., Gruber, M. J., & Rentzler, J. (1984). The ex-dividend day behavior of stock prices; A re-examination of the clientele effect: A comment. The Journal of Finance, 39(2), 551-556.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.
Gandhmal, D. P., & Kumar, K. (2019). Systematic analysis and review of stock market prediction techniques. Computer Science Review, 34, 100190.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
Hsieh, L. F., Hsieh, S. C., & Tai, P. H. (2011). Enhanced stock price variation prediction via DOE and BPNN-based optimization. Expert Systems with Applications, 38(11), 14178-14184.
Huang, S., & Liu, S. (2019). Machine learning on stock price movement forecast: the sample of the Taiwan stock exchange. International Journal of Economics and Financial Issues, 9(2), 189.
Jiang, C. H., Chen, H. L., & Huang, Y. S. (2006). Capital expenditures and corporate earnings: Evidence from the Taiwan Stock Exchange. Managerial Finance.
Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 1-54.
Kalay, A. (1982). The ex‐dividend day behavior of stock prices: a re‐examination of the clientele effect. The Journal of Finance, 37(4), 1059-1070.
Karpoff, J. M., & Walkling, R. A. (1988). Short-term trading around ex-dividend days: Additional evidence. Journal of Financial Economics, 21(2), 291-298.
Kirange, D. K., & Deshmukh, R. R. (2016). Sentiment Analysis of news headlines for stock price prediction. Composoft, An International Journal of Advanced Computer Technology, 5(3), 2080-2084.
Kumar, P., Bhatnagar, R., Gaur, K., & Bhatnagar, A. (2021, March). Classification of imbalanced data: review of methods and applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1099, No. 1, p. 012077). IOP Publishing.
Lakonishok, J., & Vermaelen, T. (1986). Tax-induced trading around ex-dividend days. Journal of Financial Economics, 16(3), 287-319.
Lee, C. Y., & Soo, V. W. (2017, December). Predict stock price with financial news based on recurrent convolutional neural networks. In 2017 conference on technologies and applications of artificial intelligence (TAAI) (pp. 160-165). IEEE.
Lee, M. C., Chang, J. W., Hung, J. C., & Chen, B. L. (2021). Exploring the effectiveness of deep neural networks with technical analysis applied to stock market prediction. Computer Science and Information Systems, 18(2), 401-418.
Lee, M. C., Liao, J. S., Yeh, S. C., & Chang, J. W. (2020, January). Forecasting the Short-term Price Trend of Taiwan Stocks with Deep Neural Network. In Proceedings of the 2020 11th International Conference on E-Education, E-Business, E-Management, and E-Learning (pp. 296-299).
Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297.
Lin, Y. T., Gong, S. C., Wu, S. S., & Lee, T. P. (2012). E/P Mean Reversion-Based Strategies for Investment Practice: Evidence from the Taiwan Market. Emerging Markets Finance and Trade, 48(1), 117-131.
Liu, Y. P. (2021). The Application of Chip Analysis and Machine Learning on predicting Taiwan stock market.
Majumder, M., & Hussian, M. A. (2007). Forecasting of Indian stock market index using artificial neural network. Information Science, 98-105.
Powell, W.B. (2007) Approximate dynamic programming: solving the curses of dimensionality. Wiley-Interscience.
Ruan, J., & Ma, T. (2012). Ex‐Dividend Day Price Behavior Of Exchange‐Traded Funds. Journal of Financial Research, 35(1), 29-53.
Tsai, C., & Yih, H. (2017). The Application of Genetic Programming on the Stock Movement Forecasting System. International Journal of Economics and Financial Issues, 7(6), 68.
Tsai, Y. C., & Hong, C. Y. (2017, November). The application of evolutionary approach for stock trend awareness. In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST) (pp. 306-311). IEEE.
Tsai, L. J., Shu, P. G., & Chiang, S. J. (2019). Foreign investors’ trading behavior and market conditions: Evidence from Taiwan. Journal of Multinational Financial Management, 52, 100591.
Vargas, M. R., Dos Anjos, C. E., Bichara, G. L., & Evsukoff, A. G. (2018, July). Deep leaming for stock market prediction using technical indicators and financial news articles. In 2018 international joint conference on neural networks (IJCNN) (pp. 1-8). IEEE.
王士豪. (2020). ETF填息天數與股利殖利率關係之探討. 國立高雄科技大學金融系. https://hdl.handle.net/11296/fr629t
史翼彰. (2020). 應用技術分析擷取特徵建構預測股價機器學習模型. 國立中正大學資訊管理系研究所碩士論文. https://hdl.handle.net/11296/73669m
任立斌. (2018). 應用特徵選取進行股價預測與獲利可能性之研究. 國立中興大學資訊管理學系所碩士論文. https://hdl.handle.net/11296/8ptkb3
吳淑錂. (2015). 以八大財務指標選股並建構投資組合之績效分析. 南華大學財務金融學系財務管理碩士班碩士論文. https://hdl.handle.net/11296/8d2q24
吳德生. (2006). 技術分析對香港股市有效性之探討-以KD、MACD、MA、RSI為技術指標. 國立臺北大學企業管理學系碩士論文. https://hdl.handle.net/11296/2k2wme
李存修. (1991). 股票股利及現金增資之除權與股價行為: 理論與實證. 臺大管理論叢, 1991, 2.1: 001-040.
李存修. (1994). 股票股利除權交易日之稅後超額報酬與比價心理假說之實證. 臺大管理論叢, 5(1), 41-60.
李洸慶. (2013). 股票報酬與財務比率的關係-修正迴歸係數偏誤法的應用. 國立政治大學經濟學系碩士論文. https://hdl.handle.net/11296/p9gk24
李紹嬅. (2001). 除權除息日股價行為影響因素之探討. 國立中山大學財務管理學系研究所碩士論文. https://hdl.handle.net/11296/quxk22
沈伊曜. (2015). 台灣上市公司填息行情之研究-以電子產業為例. 國立雲林科技大學財務金融系碩士論文. https://hdl.handle.net/11296/vv95cd
林如茵. (2004). 基於籌碼面分析利用學習分類元系統於股票市場. 國立交通大學資訊管理研究所碩士論文. https://hdl.handle.net/11296/nqzbyt
林政融. (2015). 台灣傳統產業上市公司股票行情填息之研究. 國立雲林科技大學財務金融系. https://hdl.handle.net/11296/hc42s5
林益兆. (2016). 股票投資策略之探討—以台灣股市為例. 朝陽科技大學財務金融系碩士論文. https://hdl.handle.net/11296/pr54a9
邱彥誠. (2020). 應用人工智慧於股市新聞與情感分析預測股價走勢. 國立臺北大學資訊管理研究所碩士論文. https://hdl.handle.net/11296/y676np
邱廉松.(2020). 上市櫃公司每月營收宣告對股價之影響. 國立政治大學國際經營與貿易學系碩士論文. https://hdl.handle.net/11296/ywswz4
姚怡欣. (2008). 台灣50成分股除權息日異常報酬分析. 國立中山大學經濟學研究所碩士論文. https://hdl.handle.net/11296/8favay
柯治宏. (2001). 電子業在兩稅合一前後除權(息)日異常報酬之研究. 國立臺灣大學會計學研究所碩士論文. https://hdl.handle.net/11296/3wcvdj
徐丕維. (2020). 大數據技術應用於探討股價之預測. 德明財經科技大學資訊管理系碩士論文. https://hdl.handle.net/11296/e3n5r7
徐尉哲. (2021). 股票報酬率與外資買賣超之動態關係-以蘋果供應鏈為例. 國立臺灣師範大學管理研究所碩士論文. https://hdl.handle.net/11296/328a83
張正鵬. (2002). 股價報酬率風險、低振幅比率與技術指標之有效性分析. 國立高雄第一科技大學金融營運所碩士論文. https://hdl.handle.net/11296/vt2p44
張瑋琍. (2011). 價廉物美的投資策略. 國立臺灣大學國際企業學研究所碩士論文. https://hdl.handle.net/11296/4m9x2w
陳人豪. (2018). 台股股利完全填權息關鍵影響因素之研究. 國立政治大學資訊科學系碩士在職專班碩士論文. https://hdl.handle.net/11296/gzqj45
陳旭宏. (2001). 基本分析運用於股票超額報酬之研究. 大同大學事業經營研究所碩士論文. https://hdl.handle.net/11296/x47h28
陳怡文. (1990). 台灣地區上市股票填息現象之研究-租稅效應與顧客效應之實證. 國立政治大學企業管理研究所碩士論文. https://hdl.handle.net/11296/ue5377
陳厚傑. (2019). 一個基於籌碼面動能指標之智慧型選股模型的研究. 國立高雄大學資訊工程學系碩士班碩士論文. https://hdl.handle.net/11296/8xgav4
陳浩瑋. (2017). 以深度學習進行股價預測之研究. 國立高雄第一科技大學資訊管理系碩士班碩士論文. https://hdl.handle.net/11296/xa9tc2
陳應慶. (2004). 應用技術分析指標於台灣股票市場加權指數買進時機切入之實證研究─以RSI、MACD及DIF為技術指標. 佛光人文社會學院管理學研究所碩士論文. https://hdl.handle.net/11296/qpw293
黃士青. (1997). 除息日與除權日之股價行為與套利機會之研究. 國立臺灣大學會計學系碩士論文. 自https://hdl.handle.net/11296/hj8dbd
黃光廷. (2002). 技術分析、基本分析與投資組合避險績效之研究. 國立成功大學會計學系碩博士班碩士論文. https://hdl.handle.net/11296/5ejtk9
黃怡婷. (2016). 臺灣上市電子公司填息事件異常報酬之研究. 亞洲大學財務金融學系碩士在職專班碩士論文. https://hdl.handle.net/11296/3ma586
黃翔建. (2016). 基本分析面選股之投資組合報酬率. 南臺科技大學企業管理系碩士論文. https://hdl.handle.net/11296/3yy23k
黃蕙文. (2011). 台灣股票市場填權息資訊投資策略之探討. 世新大學財務金融學研究所(含碩專班)碩士論文. https://hdl.handle.net/11296/g3w3j4
葉馨蓮. (2017). 月營收資訊內涵、投資人情緒與股價報酬之探討. 國立中山大學財務管理學系研究所碩士論文. https://hdl.handle.net/11296/37dqqm
蔡文珍. (2021). 技術分析及基本分析與股價報酬之研究. 東吳大學會計學系碩士論文. https://hdl.handle.net/11296/ccke93
蔡宜政. (2014). 低本益比與高殖利率股票投資組合績效之研究. 南華大學財務金融學系財務管理碩士班碩士論文. https://hdl.handle.net/11296/kcfua5
蔡承孝. (2019). 深度學習在不平衡數據集之研究. 國立政治大學應用數學系碩士論文. https://hdl.handle.net/11296/b8r339
蔡建成. (2007). 運用資料探勘技術進行選股決策. 國立高雄應用科技大學商務經營研究所碩士論文. https://hdl.handle.net/11296/3ju84x
鄭琮翰. (2021). 投資人情緒與填息權天數影響. 國立中正大學財務金融學系碩士在職專班碩士論文. https://hdl.handle.net/11296/cuyyyq
謝福昇. (2016). 以股價淨值比、本益比及公司市值為指標之投資組合報酬實證分析. 南華大學財務金融學系財務管理碩士班碩士論文. https://hdl.handle.net/11296/r79kkt |